Long-Time Asymptotics for the Wave Equation of Linear Elasticity in Cylindrical Waveguides

P. H. Lesky

Mathematisches Institut A der Universität Stuttgart,
Pfaffenwaldring 57, D 70569 Stuttgart

Abstract

Let $\Omega = \mathbb{R} \times D$, $D \subset \mathbb{R}^2$ bounded. Suppose that Ω is filled with a homogeneous and isotropic elastic medium, which is fixed at the boundary, and that a time-harmonic force $f(x)e^{-ikt}$ acts in Ω, where f has bounded support. The resulting elastic motion and its behaviour as $t \to \infty$ is studied. Depending on the choice of ω and f, two different types of time-asymptotic occur: Either the motion is unbounded as $t \to \infty$ at almost every $x \in \Omega$ (resonance case), or the principle of limiting amplitude holds. The resonance is shown to occur for countable many frequencies of incitation. Even two-dimensional elastic motion in a domain $\Omega = \mathbb{R} \times (0, 1)$ is considered; here the same phenomena happen. These results are proved using an explicit representation of the motion, which is obtained combining spectral- and Fourier-transform. The method is presented in a general setting, so that it is applicable also to other translation-invariant wave equations.
1 Introduction

Let $\Omega \subset \mathbb{R}^3$ be filled with a homogeneous and isotropic elastic medium, which is fixed at the boundary $\partial \Omega$. Suppose that a time-harmonic force $F(x) e^{-i\omega t}$ (with $F : \Omega \to \mathbb{R}^3$) acts in Ω. Denote by $s(t, x) \in \mathbb{R}^3$ the resulting motion of a point $x \in \Omega$ at time $t \geq 0$. Then s is solution of (see e.g. [1] or [13])

$$\begin{align*}
\mu \Delta s(t, x) + (\lambda + \mu) \text{grad div } s(t, x) \\
+ \sigma F(t, x) e^{-i\omega t} = \sigma \partial_t^2 s(t, x) & \quad \text{for } t \geq 0, \ x \in \Omega, \\
\ \\
\ s(t, x) = 0 & \quad \text{for } t \geq 0, \ x \in \partial \Omega, \\
\ s(0, x) = s_0(x), \ \partial_t s(0, x) = s_1(x) & \quad \text{for } x \in \Omega,
\end{align*}$$

\[(1.1) \]

where $\sigma > 0$ (density of mass) and $\mu > 0$, $3\lambda + 2\mu > 0$ (Lamé-constants). More general, we study in a domain $\Omega \subset \mathbb{R}^n$ the solution $u : [0, \infty) \times \Omega \to \mathbb{R}^n$ of the initial-boundary-value problem

$$\begin{align*}
\partial_t^2 u(t, x) - (\Delta + c_0 \text{grad div }) u(t, x) & = f(x) e^{-i\omega t} & \quad \text{for } t \geq 0, \ x \in \Omega, \\
\ u(t, x) = 0 & \quad \text{for } t \geq 0, \ x \in \partial \Omega, \\
\ u(0, x) = u_0(x), \ \partial_t u(0, x) = u_1(x) & \quad \text{for } x \in \Omega,
\end{align*}$$

\[(1.2) \]

where $c_0 > -1$ is supposed. The last condition $c_0 > -1$ is needed to guarantee the coerciveness of the spatial operator. It is satisfied in all physically relevant situations, since $c_0 = 1 + \frac{\lambda}{\mu}$. Let Ω be given by

$$\Omega = \mathbb{R} \times D, \quad D \subset \mathbb{R}^{n-1} \text{ bounded.} \quad (1.3)$$

In the case $n = 3$, if D is connected, then Ω is an infinite tube with cross-section D. If $n = 2$ and $D = (a, b)$ with $-\infty < a < b < \infty$, then Ω is a layer.

We are interested in the asymptotic behaviour as $t \to \infty$ of u solving (1.2). In order to give a brief description of the results, we suppose that $\partial D \in C^\infty$. It will be proved that there exists a set $\omega_{\text{res}} \subset \mathbb{R}$ of resonance frequencies, which is countable and has no finite accumulation point. If the frequency ω of incitation coincides with a resonance frequency, then resonance occurs: There exist $N \in \mathbb{N}$,
\(\alpha_1, \ldots, \alpha_{N-1} \in (0, 1) \) and \(f_1, \ldots, f_N, u_\omega \in C(\overline{\Omega}) \), such that
\[
 u(t, x) = \sum_{j=1}^{N-1} e^{-i\omega t} \alpha_j f_j(x) + e^{-i\omega t} \ln t \cdot f_N(x) + e^{-i\omega t} u_\omega(x) + o(1) \quad (1.4)
\]
as \(t \to \infty \), where the precise definition of the meaning of \(o(1) \) is given in Theorem 5.2. The functions \(f_1, \ldots, f_N \) depend on \(f \) and can be computed together with the values of \(\alpha_1, \ldots, \alpha_{N-1} \in (0, 1) \) solving a parameter-dependent eigenvalue problem in \(D \). This will be done for a special example of \(D \) in a subsequent paper. The present article shows, that at least one of \(f_1, \ldots, f_N \) does not vanish, if \(f \) is chosen suitable, and that the corresponding exponent \(\alpha_j \) is element of \(\left[\frac{1}{2}, 1 \right) \).

If \(\omega \in [0, \infty) \setminus \omega_{\text{res}} \), then \(u \) satisfies the principle of limiting amplitude
\[
 u(t, x) = e^{-i\omega t} u_\omega(x) + o(1) \quad \text{as } t \to \infty, \quad (1.5)
\]
where \(u_\omega \in C^2(\overline{\Omega}) \) solves
\[
\left\{
\begin{array}{l}
 (-\Delta - c_0 \text{grad div} - \omega^2) u_\omega(x) = f(x) \quad \text{in } \Omega, \\
 u(x) = 0 \quad \text{on } \partial \Omega.
\end{array}
\right. \quad (1.6)
\]

These results are obtained using a method, which was developed in [12] and used in [8]. It is based on an explicit representation of the spectral family of the spatial operator in (1.2), which is computed using Fourier-transform with respect to the unbounded variable. This article presents the method in a more general setting, so that it can be applied to other wave equations being translation invariant.

In order to be more precise, let \(\mathcal{H} \) be a Hilbert-space given by
\[
\mathcal{H} := L_2(\mathbb{R}, H), \quad H = \text{separable Hilbert-space} \quad (1.7)
\]
(e.g. \(H = L_2(D)^n \), \(\mathcal{H} = L_2(\Omega)^n \)). The Fourier-transform with respect to the first variable is defined by
\[
\mathcal{F} := F \otimes \text{Id} : \mathcal{H} = L_2(\mathbb{R}) \otimes H \to \mathcal{H} \quad (\otimes = \text{tensor product}), \quad (1.8)
\]
with $F : L_2(\mathbb{R}) \to L_2(\mathbb{R})$ and $\text{Id} : H \to H$ denoting respectively usual Fourier-transform and identity. Let \mathcal{A} be an operator in \mathcal{H}, given by

$$\mathcal{A} = \mathcal{F}^{-1} \circ \int_{\mathbb{R}}^{\oplus} \lambda(\xi) d\xi \circ \mathcal{F},$$

(1.9)

where $\{\lambda(\xi)\}_{\xi \in \mathbb{R}}$ denotes a family of self-adjoint operators in H (for the notation see section XIII.16 of [14]). Roughly spoken, (1.9) means that $\lambda(\xi)$ defines the Fourier-transform of \mathcal{A} by

$$(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi) = \lambda(\xi) f(\xi) \quad \text{for almost every } \xi \in \mathbb{R},$$

if $f \in D(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}) \subset L_2(\mathbb{R}, H)$. The operator family is supposed to satisfy the following assumptions:

(A1) For every fixed $\xi \in \mathbb{R}$, $\lambda(\xi)$ is self-adjoint and positive in H.

(A2) For every fixed $\xi \in \mathbb{R}$, $\lambda(\xi)$ has an orthonormal system of eigenfunctions $\{\psi_j(\xi)\}_{j \in \mathbb{N}}$ being complete in H. The corresponding eigenvalues are denoted by $\lambda_j(\xi)$, where every eigenvalue eventually has to be counted multiple times according to his multiplicity, which is supposed to be finite.

(A3) For every fixed $j \in \mathbb{N}$, $\lambda_j(\xi)$ and $\psi_j(\xi)$ depend analytically on ξ.

(A4) For every $\lambda \in \mathbb{R}$, the set $\{(j, \xi) \in \mathbb{N} \times \mathbb{R} : \lambda_j(\xi) = \lambda\}$ is empty or finite, and for every fixed $j \in \mathbb{N}$, $\lambda_j(\xi) \to +\infty$ as $\xi \to \pm\infty$.

Then \mathcal{A} is self-adjoint in \mathcal{H} (see [14], sec. XIII.16).

Section 2 studies the spectral family of \mathcal{A}. The spectrum $\sigma(\mathcal{A})$ of \mathcal{A} consists of one infinite interval and is purely absolutely continuous. We say that $\lambda \in \sigma(\mathcal{A})$ is a resonance point, if and only if

$$\exists (j, \xi) \in \mathbb{N} \times \mathbb{R} : \lambda = \lambda_j(\xi) \wedge \frac{d\lambda_j}{d\xi}(\xi) = 0.$$

(1.10)

The set of all resonance points is countable and has no finite accumulation point. The spectral family $\{P_\lambda\}_{\lambda \in \mathbb{R}}$ of \mathcal{A} will be shown to have a Hölder-continuous derivative
with respect to λ (in a certain sense) at every $\lambda \in \mathbb{R}$ being no resonance point. If $\lambda_0 \in \mathbb{R}$ is a resonance point, then the derivative with respect to λ of the spectral family has a singularity of type $|\lambda - \lambda_0|^{-\alpha}$ with $\alpha \in (0, 1)$. For a more precise statement see (2.15).

Section 3 studies the solution of the initial value problem

\[
\begin{align*}
 u & \in C^2([0, \infty), \mathcal{H}), \quad u(t) \in D(A) \quad \text{for } t \geq 0, \\
 u''(t) + Au(t) & = f e^{-i\omega t} \quad \text{for } t \geq 0, \\
 u(0) & = u_0, \quad u'(0) = u_1,
\end{align*}
\]

(1.11)

where u' denotes the derivative of u. The solution u is given by spectral integrals.

Theorem 3.2 shows the connection between the long-time behaviour of u and the properties of the spectral family $\{P_\lambda f\}$ at $\lambda = \omega^2$ and at $\lambda = 0$. If ω^2 is a resonance point and if f is chosen suitable, then u shows resonance. If ω^2 is no resonance point and if the behaviour of the spectral family near $\lambda = 0$ is not too bad, then the principle of limiting amplitude holds.

Section 4 studies spectral properties of the elastic spatial operator. It is shown that the theory developed in Sections 2 and 3 can be applied to problem (1.2). In section 5, the long-time behaviour of the solution u of (1.2) is computed. Application of the general theory yields estimates with respect to some weighted norms. Using elliptic regularity theory, pointwise estimates of $u(t, x)$ as $t \to \infty$ are proved.

Equation (1.1) with other (non homogeneous) boundary conditions in a domain $\Omega = \mathbb{R}^d \times (0, h)$ is considered in the modelling of seismic waves. In this context, L. Brevdo obtained similar resonance effects in [3], [4] and [5]. He studies the solution using spatial Fourier-transform and Laplace-transform with respect to time. This method was developed by R. Briggs in [6]. The theory in this book leads to the same definition of resonance points as (1.10). The considerations there are not restricted to self-adjoint spatial operators. But one has to pay for this generality: It has to be distinguished between resonance points leading to convective instabilities and those leading to absolute instabilities. The result of the present paper shows in the case of a self-adjoint spatial operator, that at every resonance point an absolute instability
I want to thank P. Werner and J. Giannoulis for various discussions. Thanks to S. Müller, who gave me a hint how to optimize the underlying Sobolev-spaces.

2 Spectral properties of \(A \)

We study the spectral family \(\{P_\lambda\} \) of the self-adjoint operator \(A \) given by (1.9). The main result in this section consists of an explicit representation of the spectral family (see Theorem 2.3).

Suppose that the operator family \(\{A(\xi)\}_{\xi \in \mathbb{R}} \) satisfies Assumptions (A1) – (A4) given on page 4. Set

\[
\lambda_{\min} := \min \{\lambda_j(\xi) : j \in \mathbb{N}, \ \xi \in \mathbb{R}\}.
\] (2.1)

From (A3) and (A4), one obtains that the given set has a minimum. Furthermore, (A1) implies that \(\lambda_{\min} \geq 0 \). Define the set of resonance points by

\[
\sigma_{\text{res}}(A) := \left\{ \lambda_j(\xi) : j \in \mathbb{N} \land \xi \in \mathbb{R} \land \frac{d\lambda_j}{d\xi}(\xi) = 0 \right\}.
\] (2.2)

By (A3) and (A4), \(\sigma_{\text{res}}(A) \) is countable infinite and has no finite accumulation point. Obviously \(\lambda_{\min} \in \sigma_{\text{res}}(A) \). Write \(\sigma_{\text{res}}(A) \) as

\[
\sigma_{\text{res}}(A) = \{\sigma_1, \sigma_2, \ldots\} \quad \text{with} \quad \lambda_{\min} = \sigma_1 < \sigma_2 < \ldots, \ \sigma_j \to \infty \text{ as } j \to \infty. \] (2.3)

In order to define local inverses of the mapping \(\xi \mapsto \lambda_j(\xi) \), let \(j \in \mathbb{N} \) be fixed. By the analycity of \(\lambda_j \), the set

\[
S_j := \left\{ \xi \in \mathbb{R} : \frac{d\lambda_j}{d\xi}(\xi) = 0 \right\}
\]

is finite or countable with no finite accumulation point. Hence one can write

\[
S_j = \{\rho_{jk} : k \in \mathbb{I}_j\} \quad \text{with} \quad \rho_{jk} < \rho_{j(k+1)} \text{ if } k, k + 1 \in \mathbb{I}_j,
\]
where $\mathbb{I}_j = \{1, \ldots, N\}$ or $\mathbb{I}_j = \mathbb{N}$ or $\mathbb{I}_j = \mathbb{Z}$. Define intervals I_{jk} by

$$I_{jk} := \begin{cases} (-\infty, \rho_j(k+1)) & \text{if } k \not\in \mathbb{I}_j, \ k+1 \in \mathbb{I}_j, \\ [\rho_{jk}, \rho_j(k+1)] & \text{if } k, \ k+1 \in \mathbb{I}_j, \\ [\rho_{jk}, \infty) & \text{if } k \in \mathbb{I}_j, \ k+1 \not\in \mathbb{I}_j \end{cases}$$

(2.4)

for $k \in \bar{\mathbb{I}}_j$, where $\bar{\mathbb{I}}_j := \mathbb{I}_j \cup \{\min\{k \in \mathbb{I}_j\} - 1\}$ if \mathbb{I}_j is bounded from below, and $\bar{\mathbb{I}}_j := \mathbb{I}_j$ otherwise. Then $\{I_{jk}\}_{k \in \bar{\mathbb{I}}_j}$ defines a decomposition of \mathbb{R} having the property, that the restriction $\lambda_j : I_{jk} \to \lambda_j(I_{jk})$ is one-to-one for every $k \in \bar{\mathbb{I}}_j$. Let $r_{jk} : \lambda_j(I_{jk}) \to I_{jk}$ denote the inverse mapping. Note that the domain of definition of r_{jk} consists of a closed interval. By the analyticity of λ_j, r_{jk} is C^∞ in the interior of $\lambda_j(I_{jk})$. Define $K(\lambda)$ by

$$K(\lambda) := \{(j, k) \in \mathbb{N} \times \mathbb{N} : \lambda \in \lambda_j(I_{jk})\} \quad \text{for } \lambda \in \mathbb{R}. \quad (2.5)$$

This set is empty, if $\lambda < \lambda_{\min}$. Otherwise, $K(\lambda)$ contains all pairs $(j, k) \in \mathbb{N} \times \mathbb{N}$ having the property, that λ is in the domain of definition of r_{jk}. According to (A4), $K(\lambda)$ is finite for every $\lambda \geq \lambda_{\min}$. Remember that $\sigma_{\text{res}}(\mathcal{A}) = \{\sigma_1, \sigma_2, \ldots\}$ and note that $K(\lambda)$ is constant on (σ_p, σ_{p+1}) for every $p \in \mathbb{N}$. For every $\sigma_p \in \sigma_{\text{res}}(\mathcal{A})$ set

$$K^+(\sigma_p) := \begin{cases} (j, k) \in K(\lambda) \text{ with } \lambda \in (\sigma_p, \sigma_{p+1}) : \frac{d\lambda_j}{d\xi}(r_{jk}(\sigma_p)) = 0 \end{cases},$$

$$K^-(\sigma_p) := \begin{cases} (j, k) \in K(\lambda) \text{ with } \lambda \in (\sigma_{p-1}, \sigma_p) : \frac{d\lambda_j}{d\xi}(r_{jk}(\sigma_p)) = 0 \end{cases} \quad (p \neq 1),$$

$$K^-(\sigma_1) := \emptyset,$$

(2.6)

$$N(j, k, p) := \min\left\{ l \geq 2 : \frac{d^l \lambda_j}{d\xi^l}(r_{jk}(\sigma_p)) \neq 0 \right\} \quad \text{for } (j, k) \in K^+(\sigma_p) \cup K^-(\sigma_p). \quad (2.7)$$

\textbf{Lemma 2.1} 1) If $\sigma_p, \sigma_{p+1} \in \sigma_{\text{res}}(\mathcal{A})$ and $(j, k) \in K(\lambda)$ for $\lambda \in (\sigma_p, \sigma_{p+1})$, then $r_{jk} \in C^\infty(\sigma_p, \sigma_{p+1})$.

2) If $\sigma_p \in \sigma_{\text{res}}(\mathcal{A})$, $p \geq 2$, and if $(j, k) \in K(\sigma_p) \setminus (K^+(\sigma_p) \cup K^-(\sigma_p))$, then $r_{jk} \in C^\infty(\sigma_{p-1}, \sigma_{p+1})$. Furthermore $K(\sigma_1) = K^+(\sigma_1)$. 7
3) If \(\sigma_p \in \sigma_{rs}(A) \) and \((j, k) \in K^+(\sigma_p)\), then there exist constants \(c_{jkpq} \in \mathbb{R}, c_{jkpl} \neq 0 \) and \(\delta > 0\) such that

\[
\frac{dr_{jk}}{d\lambda}(\lambda) = \sum_{q=1}^{\infty} \frac{c_{jkpq}}{|\lambda - \sigma_p|^{-q/N(jk,p)}}
\]

for \(\lambda \in (\sigma_p, \sigma_p + \delta)\). If \((j, k) \in K^-(\sigma_p)\), then (2.8) holds for \(\lambda \in (\sigma_p - \delta, \sigma_p)\) with suitable chosen constants \(c_{jkpq} \in \mathbb{R}, c_{jkpl} \neq 0 \) and \(\delta > 0\).

4) If \(\sigma_p \in \sigma_{rs}(A) \) and \((j, k) \in K^+(\sigma_p) \cup K^-(\sigma_p)\), then either \((j, k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)\) or \((j, k-1) \in K^+(\sigma_p) \cup K^-(\sigma_p)\). If \((j, k), (j, k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)\), then the coefficients in (2.8) satisfy

\[
c_{jkpl} = (-1)^{N(jk,p)+1} c_{j(k+1)p}.
\]

Proof: Note that \(\sigma_{rs}(A) = \bigcup_{j=1}^{\infty} \lambda_j(S_j)\). If \((j, k) \in K(\lambda)\) for \(\lambda \in (\sigma_p, \sigma_{p+1})\), then \((\sigma_p, \sigma_{p+1})\) is subset of the interior of \(\lambda_j(I_{jk})\). This implies \(r_{jk} \in C^\infty(\sigma_p, \sigma_{p+1})\) by the considerations made before the lemma.

If \(\sigma_p \in \sigma_{rs}(A), p \geq 2\), and if \((j, k) \in K(\sigma_p) \setminus (K^+(\sigma_p) \cup K^-(\sigma_p))\), then \((\sigma_{p-1}, \sigma_{p+1})\) is subset of the interior of \(\lambda_j(I_{jk})\) and \(r_{jk} \in C^\infty(\sigma_{p-1}, \sigma_{p+1})\) follows as before. Assume that \((j, k) \in K(\sigma_1)\). Since \(\lambda_j(r_{jk}(\sigma_1)) = \sigma_1 \) and \(\lambda_j(\xi) \geq \sigma_1 = \lambda_{\min}\) for \(\xi \in \mathbb{R}, \frac{d\lambda_j}{d\xi}(r_{jk}(\sigma_1))\) has to vanish. Hence \((j, k) \in K^+(\sigma_1)\). On the other hand, \(K^+(\sigma_1) \subset K(\sigma_1)\) holds by definition.

If \(\sigma_p \in \sigma_{rs}(A) \) and \((j, k) \in K^+(\sigma_p) \cup K^-(\sigma_p)\), then \(r_{jk}(\sigma_p)\) is a boundary point of \(I_{jk}\). This implies that \(\sigma_p = \lambda_j(r_{jk}(\sigma_p))\) is a boundary point of \(\lambda_j(I_{jk})\), the domain of definition of \(r_{jk}\). According to [2], §21, \(r_{jk}\) can be represented by a puiseux-series

\[
r_{jk}(\lambda) = r_{jk}(\sigma_p) + \sum_{q=1}^{\infty} \tilde{c}_{jkpq} |\lambda - \sigma_p|^{q/N(jk,p)}
\]

for \(\lambda \in \lambda_j(I_{jk}) \cap (\sigma_p - \delta, \sigma_p + \delta)\) with suitable chosen \(\tilde{c}_{jkpq} \in \mathbb{R}\) and \(\delta > 0\). Hence (2.8) holds. Since \(\sigma_p = \lambda_j(r_{jk}(\sigma_p))\) is a boundary point of \(\lambda_j(I_{jk})\), \(\sigma_p\) is either a boundary point of \(\lambda_j(I_{jk-1})\) or of \(\lambda_j(I_{jk+1})\). This implies that either \((j, k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)\) or \((j, k-1) \in K^+(\sigma_p) \cup K^-(\sigma_p)\). Suppose that \((j, k), (j, k+1) \in K^+(\sigma_p) \cup K^-(\sigma_p)\). Then \(r_{jk}(\sigma_p) = r_{j(k+1)}(\sigma_p)\) and
\(N(j, k, p) = N(j, k + 1, p)\). Relation (2.9) follows inserting the puiseux-series representation of \(r_{jk}\) and \(r_{jk(k+1)}\) into the Taylor expansion of \(\lambda_j\) at \(\xi = r_{jk}(\sigma_p)\) and using that \(\lambda_j(r_{jk}(\lambda)) = \lambda\) for \(\lambda \in \lambda_j(I_{jk}) \cup \lambda_j(I_{jk(k+1)})\). \(\square\)

For \(s \in \mathbb{R}\) define the Banach space \(\mathcal{H}_s\) by

\[
\|\varphi\|_s := \left(\int_{\mathbb{R}} \left(1 + |x|^2\right)^s \|\varphi(x)\|^2_{\mathcal{H}} \, dx \right)^{1/2},
\]

\[
\mathcal{H}_s := L_{2s}(\mathbb{R}, H) := \{ \varphi \in L_{2s,\text{loc}}(\mathbb{R}, H) : \|\varphi\|_s < \infty \} \tag{2.10}
\]

Lemma 2.2 Suppose that \(s, s' > \frac{1}{2}\) and \(f \in \mathcal{H}_s\). Set

\[
\psi_j(\xi)(x) := e^{i\xi x} \langle (F f)(\xi), v_j(\xi) \rangle_H v_j(\xi) \quad \text{for } \xi, x \in \mathbb{R}, \ j \in \mathbb{N} \tag{2.11}
\]

Then \(\psi_j(\xi) \in \mathcal{H}_{-s'}\) for \(\xi \in \mathbb{R}\) and \(\psi_j \in C^{k,\alpha}(\mathbb{R}, \mathcal{H}_{-s'})\) with \(k \in \mathbb{N}_0\), \(k < \min\{s, s'\} - \frac{1}{2}\) and \(\alpha := \min\{s - k - \frac{1}{2}, s' - k - \frac{1}{2}, 1\}\).

Proof: If \(v \in H\), then

\[
\langle (\mathcal{F} f)(\xi), v \rangle_H = F \langle (f(\cdot), v) \rangle_H(\xi)
\]

(see (1.8)). The mapping \(\xi \mapsto F\langle (f(\cdot), v) \rangle_H(\xi)\) is element of \(H^s(\mathbb{R})\), since \(f \in \mathcal{H}_s\). By Sobolev’s Lemma, \(H^s(\mathbb{R}) \subset C^{k,\alpha}(\mathbb{R})\). Since \(v_j\) depends analytically on \(\xi\) by Assumption (A3), the mapping \(\xi \mapsto \langle (\mathcal{F} f)(\xi), v_j(\xi) \rangle_H v_j(\xi)\) is element of \(C^{k,\alpha}(\mathbb{R}, H)\).

Note that \(\mathcal{H}_{-s'}\) is adjoint to \(\mathcal{H}_{s'}\) with respect to the inner product in \(\mathcal{H}\). If \(g \in \mathcal{H}_{s'}\), then

\[
\langle \psi_j(\xi), g \rangle_{\mathcal{H}} = \int_{\mathbb{R}} e^{i\xi x} \langle (\mathcal{F} f)(\xi), v_j(\xi) \rangle_H \langle v_j(\xi), g(x) \rangle_H \, dx
\]

\[
= \sqrt{2\pi} \langle (\mathcal{F} f)(\xi), v_j(\xi) \rangle_H \langle v_j(\xi), (\mathcal{F} g)(\xi) \rangle_H.
\]

Hence \(\psi_j \in C^{k,\alpha}(\mathbb{R}, \mathcal{H}_{-s'})\) follows from the first part of the proof. \(\square\)

Theorem 2.3 Let \(\mathcal{H}\) be a Hilbert-space having the representation (1.7). Suppose that the self-adjoint operator \(A\) is given by (1.9) and that the associated operator family satisfies Assumptions (A1) – (A4) (see page 4). Denote by \(\{P_\lambda\}\) the (left-hand continuous) spectral family of \(A\). Then:
1) The spectrum $\sigma(A)$ of A is purely absolutely continuous and $\sigma(A) = [\lambda_{\text{min}}, \infty)$, where λ_{min} is defined by (2.1). In particular, A has no eigenvalues and $P_\lambda = 0$ for $\lambda \leq \lambda_{\text{min}}$.

2) Let $s, s' > \frac{1}{2}$ and $f \in \mathcal{H}_s$ be fixed (for the definition of \mathcal{H}_s see (2.10)). Then

$$P_\lambda f = \frac{1}{\sqrt{2\pi}} \int_{\lambda_{\text{min}}}^\lambda \sum_{(j,k) \in K(\mu)} \left| \frac{dr_{jk}(\mu)}{d\mu} \psi_j(r_{jk}(\mu)) \right| d\mu$$

(2.12)

for $\lambda > \lambda_{\text{min}}$. (For the definition of ψ_j, $K(\mu)$ and r_{jk} see respectively (2.11), (2.5) and the text above (2.5)). Furthermore:

(a) Consider the mapping $P_\lambda f : \mathbb{R} \to \mathcal{H}_{-s'} : \lambda \mapsto P_\lambda f$. For every $\sigma_p, \sigma_{p+1} \in \sigma_{\text{res}}(A)$ (see (2.3)),

$$P_\lambda f \in C^{1,\alpha}((\sigma_p, \sigma_{p+1}), \mathcal{H}_{-s'})$$

with $\alpha := \min\{s - \frac{1}{2}, s' - \frac{1}{2}, 1\}$.

(2.13)

(b) If $\sigma_p \in \sigma_{\text{res}}(A)$, set

$$N_p := \max \left\{ N(j,k,p) : (j,k) \in K^+(\sigma_p) \cup K^-(\sigma_p) \right\}$$

(2.14)

and suppose that $s, s' > N_p - \frac{1}{2}$ and $f \in \mathcal{H}_s$ are fixed. Then there exist bounded operators $Q_{j,k,p} : \mathcal{H}_s \to \mathcal{H}_{-s'}$, such that

$$\left\| \frac{dP_\lambda f}{d\lambda}(\lambda) - \sum_{(j,k) \in K^+(\sigma_p)} \sum_{l=1}^{N(j,k,p)} \frac{1}{|\lambda - \sigma_{p}|^{1/l(N(j,k,p))}} Q_{j,k,p}(f) \right\|_{-s'} = O\left(|\lambda - \sigma_{p}|^{\alpha/N}\right)$$

(2.15)

as $\lambda \downarrow \sigma_p$ with $\alpha := \min\{s - N_p + \frac{1}{2}, s' - N_p + \frac{1}{2}, 1\}$. The same estimate holds as $\lambda \uparrow \sigma_p$, if $K^+(\sigma_p)$ is replaced by $K^-(\sigma_p)$. Furthermore,

$$Q_{j,k,p}(f)(x) = \frac{1}{\sqrt{2\pi}} |c_{j,k,p}| e^{i x r_{jk}(\sigma_p)} \langle (\mathcal{F} f)(r_{jk}(\sigma_p)), v_j(r_{jk}(\sigma_p)) \rangle_H v_j(r_{jk}(\sigma_p))$$

(2.16)

for $x \in \mathbb{R}$, where $c_{j,k,p}$ denotes the constant of the first summand in (2.8).
Proof: Set

\[\hat{\mathcal{A}} := \int_{\mathbb{R}} A(\xi) \, d\xi. \]

According to Theorem XIII.85 in [14], \(\hat{\mathcal{A}} \) is self-adjoint in \(\mathcal{H} \). Denote the (left-hand continuous) spectral family in of \(\hat{\mathcal{A}} \) by \(\{ \hat{P}_\lambda \}_{\lambda \in \mathbb{R}} \). Consider a fixed \(\lambda \in \mathbb{R} \) and set \(G(t) := 1 \) if \(t \leq \lambda \), \(G(t) := 0 \) if \(t > \lambda \). Theorem XIII.85 in [14] shows that

\[\hat{P}_\lambda = G(\hat{\mathcal{A}}) = \int_{\mathbb{R}} G(A(\xi)) \, d\xi = \int_{\mathbb{R}} P^{(\xi)} \, d\xi \]

with \(\{ P^{(\xi)} \} \) denoting the spectral family of \(A(\xi) \) for \(\xi \in \mathbb{R} \). If \(g \in \mathcal{H} \), then

\[\left(\hat{P}_\lambda g \right)(\xi) = P^{(\xi)} g(\xi) = \sum_{j \in \{ j \in \mathbb{R} : \lambda_j(\xi) < \lambda \}} \langle g(\xi), v_j(\xi) \rangle_H v_j(\xi) \]

for every \(\xi \in \mathbb{R} \) according to Assumption (A2). Note that \(\mathcal{A} = \mathcal{F}^{-1} \hat{\mathcal{A}} \mathcal{F} \) implies that \(P_\lambda = \mathcal{F}^{-1} \hat{P}_\lambda \mathcal{F} \) for \(\lambda \in \mathbb{R} \). Fix \(f \in \mathcal{H}_s \), where \(s > 1/2 \). Then

\[(\mathcal{F} P_\lambda f)(\xi) = \left(\hat{P}_\lambda \mathcal{F} f \right)(\xi) = \sum_{j \in \{ j \in \mathbb{R} : \lambda_j(\xi) < \lambda \}} \langle (\mathcal{F} f)(\xi), v_j(\xi) \rangle_H v_j(\xi). \]

The right-hand side consists of a finite sum, has bounded support with respect to \(\xi \) (see (A4)) and is a continuous mapping from \(\mathbb{R} \) into \(H \) (see the proof of Lemma 2.2). Set \(L(\lambda) := \{ j \in \mathbb{N} : \lambda_j(\xi) < \lambda \text{ for at least one } \xi \in \mathbb{R} \} \). By (A4), \(L(\lambda) \) is empty or finite for every \(\lambda \in \mathbb{R} \). Application of \(\mathcal{F}^{-1} \) onto the last equation yields that

\[P_\lambda f = \frac{1}{\sqrt{2\pi}} \sum_{j \in L(\lambda)} \int_{\{ \xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda \}} \psi_j(\xi) \, d\xi, \]

where \(\psi_j \) depends continuously on \(\xi \) (see Lemma 2.2). Obviously \(P_\lambda f = 0 \) if \(\lambda \leq \lambda_{\text{min}} \). If \(\lambda > \lambda_{\text{min}} \) and \(j \in L(\lambda) \),

\[\{ \xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda \} = \bigcup_{k \in I_j} (I_{jk} \cap \{ \xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda \}) \]

with \(I_{jk} \) being defined by (2.4). Note that the sets on the right-hand side have disjoint interiors. Furthermore, \(I_{jk} \cap \{ \xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda \} \neq \emptyset \) only for finitely many...
values of k. Substitution $\xi = r_{jk}(\mu)$ yields that

$$
\int_{I_{jk} \cap \{ \xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda \}} \psi_j(\xi) \, d\xi = \left\{
\begin{array}{ll}
\int_{\lambda_j(I_{jk}) \cap [\lambda_{\text{min}}, \lambda]} \psi_j(r_{jk}(\mu)) \left| \frac{dr_{jk}(\mu)}{d\mu} \right| \, d\mu & \text{if } (j, k) \in \mathcal{K}(\lambda) := \bigcup_{\mu \leq \lambda} K(\mu), \\
0 & \text{otherwise,}
\end{array}
\right.
$$

since the integrand on the right-hand side is continuous in the interior of $\lambda_j(I_{jk})$ and has integrable singularities at the boundary points of $\lambda_j(I_{jk})$ according to (2.8). This implies that

$$
P_\lambda f = \frac{1}{\sqrt{2\pi}} \sum_{j \in \mathcal{L}(\lambda)} \sum_{k \in \mathcal{L}_j} \int_{I_{jk} \cap \{ \xi \in \mathbb{R} : \lambda_j(\xi) \leq \lambda \}} \psi_j(\xi) \, d\xi
$$

$$
= \frac{1}{\sqrt{2\pi}} \sum_{(j, k) \in \mathcal{K}(\lambda)} \lambda_j(I_{jk}) \cap [\lambda_{\text{min}}, \lambda] \psi_j(r_{jk}(\mu)) \left| \frac{dr_{jk}(\mu)}{d\mu} \right| \, d\mu
$$

Now (2.12) follows. From (2.12) together with Lemmata 2.1 and 2.2 one obtains that (2.13) holds.

Representation (2.12) shows that $\sigma(A)$ is purely absolutely continuous. For every $\lambda \in [\lambda_{\text{min}}, \infty) \setminus \sigma_{\text{res}}(A)$, there exists $f \in \mathcal{H}_s$ such that $\frac{dP_\lambda f}{d\lambda}(\lambda) \neq 0$. This together with $P_\lambda = 0$ for $\lambda \leq \lambda_{\text{min}}$ proves that $\sigma(A) = [\lambda_{\text{min}}, \infty)$.

If the assumptions of case 2b) are satisfied, Lemma 2.2 implies that

$$
\left\| \psi_j(\xi) - \sum_{l=0}^{N_p-1} \frac{1}{l!} \frac{d^l \psi_j}{d\xi^l}(r_{jk}(\sigma_p)) (\xi - r_{jk}(\sigma_p))^l \right\|_{-\delta'} = O\left(|\xi - r_{jk}(\sigma_p)|^{N_p-1+\alpha} \right)
$$

as $\xi \to r_{jk}(\sigma_p)$, where

$$
f \mapsto \frac{d^l \psi_j}{d\xi^l}(r_{jk}(\sigma_p)): \mathcal{H}_s \to \mathcal{H}_{-\delta'}
$$

are bounded linear operators according to Lemma 2.2. Inserting (2.8) and the corresponding puiseux-series representation of r_{jk} at σ_p in the preceding estimate yields (2.15) and (2.16).
3 Initial-value problems

We study the solution \(u \) of (1.11), where \(\mathcal{A} \) denotes a positive self-adjoint operator in a Hilbert-space \(\mathcal{H} \). The long time behaviour of \(u \) is given by Theorem 3.2 and Corollary 3.3.

Denote by \(\{ P_\lambda \}_{\lambda \in \mathbb{R}} \) the (left-hand continuous) spectral family of \(\mathcal{A} \). Then \(P_\lambda = 0 \) if \(\lambda \leq 0 \). For \(r > 0 \), set

\[
\begin{align*}
D(A^r) & := \{ \varphi \in \mathcal{H} : \int_0^\infty \lambda^{2r} d(||P_\lambda \varphi||^2) < \infty \}, \\
A^r \varphi & := \int_0^\infty \lambda^r d(P_\lambda \varphi) \quad \text{if} \ \varphi \in D(A^r). \quad (3.1)
\end{align*}
\]

Theorem 3.1 Let \(\mathcal{A} \) be a self-adjoint positive operator in the Hilbert-space \(\mathcal{H} \). Then:

1) There is at most one solution \(u \) of the initial-value problem (1.11).

2) If \(\omega \geq 0 \) and \(u_0 \in D(A^{k/2}) \), \(u_1 \in D(A^{(k-1)/2}) \), \(f \in D(A^{(k-2)/2}) \) for some \(k \in \mathbb{N} \), \(k \geq 2 \), then (1.11) has a solution \(u \). Furthermore,

\[
\begin{align*}
A^{(k-j)/2} u & \in C^j([0,\infty), \mathcal{H}) \quad (j \leq k), \\
\frac{d^j(A^{i/2} u)}{dt^j} & = A^{i/2} \left(\frac{d^i u}{dt^i} \right) \quad (j + i \leq k). \quad (3.2)
\end{align*}
\]

Proof: If \(u \) solves (1.11) with vanishing data, then \(\frac{d}{dt} (||u(t)||^2 + \langle \mathcal{A} u(t), u(t) \rangle) = 0 \) for \(t > 0 \). This implies that \(u = 0 \).

By functional calculus, the solution of (1.11) is given by

\[
u(t) = \int_0^\infty \psi_\omega(t, \lambda) d(P_\lambda f) + \int_0^\infty \cos \sqrt{\lambda} t d(P_\lambda u_0) + \int_0^\infty \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d(P_\lambda u_1), \quad (3.3)
\]
where in the case $\omega > 0$

$$
\psi_\omega(t, \lambda) = \begin{cases}
\frac{1}{\lambda - \omega^2} \left(e^{-i\omega t} - \cos \sqrt{\lambda} t + \frac{i\omega}{\sqrt{\lambda}} \sin \sqrt{\lambda} t \right) & \text{if } \lambda \in \mathbb{R} \setminus \{\omega^2, 0\}, \\
\frac{1}{2\omega} \left(t e^{-i\omega t} - \frac{1}{\omega} \sin \omega t \right) & \text{if } \lambda = \omega^2, \\
\frac{1}{\omega^2} \left(1 - e^{-i\omega t} - i\omega t \right) & \text{if } \lambda = 0,
\end{cases}
$$

(3.4)

and

$$
\psi_0(t, \lambda) = \begin{cases}
\frac{1}{\lambda} \left(1 - \cos \sqrt{\lambda} t \right) & \text{if } \lambda \in \mathbb{R} \setminus \{0\}, \\
\frac{t^2}{2} & \text{if } \lambda = 0.
\end{cases}
$$

(3.5)

From this (3.2) follows by standard calculations. \qed

Note that $\psi_\omega(t, \omega^2)$ and $\psi_\omega(t, 0)$ are unbounded as $t \to \infty$. The behaviour of u as $t \to \infty$ depends crucially on the behaviour of P_λ as $\lambda \to \omega^2$ and $\lambda \downarrow 0$. We require, that the operator A satisfies the following assumption:

(P1) \mathcal{H} is continuously imbedded in some Banach space \mathcal{B} and there is a subset $\tilde{\mathcal{B}} \subset \mathcal{H}$, such that for every fixed $g \in \tilde{\mathcal{B}}$ the mapping $P_\lambda : \mathbb{R} \mapsto \mathcal{B} : \lambda \mapsto P_\lambda g$ is differentiable almost everywhere with derivative $\frac{dP_\lambda g}{d\lambda} \in L_1((0, M), \mathcal{B})$ for every $M > 0$.

If $f \in \tilde{\mathcal{B}}$ and $\varphi \in C([0, M])$, then

$$
\int_0^M \varphi(\lambda) d(P_\lambda f) = \int_0^M \varphi(\lambda) \frac{dP_\lambda f}{d\lambda}(\lambda) d\lambda
$$

(3.6)

($M > 0$), where the right-hand side has to be read as a Bochner-integral, see eg. [16].

We will make use of the following theorem:

Theorem 3.2 Suppose that A is a positive and self-adjoint operator in the Hilbert space \mathcal{H} and that A obeys condition (P1) given above. Let $\omega \geq 0, f \in \tilde{\mathcal{B}}, u_1 \in D(A^{1/2}) \cap \tilde{\mathcal{B}}, u_2 \in D(A) \cap \tilde{\mathcal{B}}$ be given. Furthermore suppose that the following two assumptions are satisfied:

14
\textbf{(P2)} There exist $N_f, N_{u_1} \in \mathbb{N}$ and $f_1^{(0)}, \ldots, f_{[N_f/2]}^{(0)}, (u_1)_{1}^{(0)}, \ldots, (u_{[N_u/2]})^{(0)} \in \mathcal{B}$ (with $[\frac{N}{2}] := \max \{ j \in \mathbb{N}_0 : j \leq \frac{N}{2} \}$), such that for respectively $g := f$ and $g := u_1$

$$
\int_0^1 \frac{1}{\sqrt{\lambda}} \left| \frac{dP_\lambda g}{d\lambda}(\lambda) - \sum_{j=1}^{[N_f/2]} \frac{g_j^{(0)}}{\lambda^{1-j/N_f}} \right| d\lambda < \infty.
$$

\textbf{(P3)} There exist $N \in \mathbb{N}_0$ and $f_1^+, \ldots, f_N^+ \in \mathcal{B}$, such that

$$
\int_0^{\omega^2} \frac{1}{|\lambda - \omega^2|} \left| \frac{dP_\lambda f}{d\lambda}(\lambda) - \sum_{j=1}^{N} \frac{f_j^-}{|\lambda - \omega^2|^{1-j/N}} \right| d\lambda < \infty \quad \text{(if $\omega^2 > 0$)},
$$

$$
\int_{\omega^2}^{\omega^2+1} \frac{1}{\lambda - \omega^2} \left| \frac{dP_\lambda f}{d\lambda}(\lambda) - \sum_{j=1}^{N} \frac{f_j^+}{(\lambda - \omega^2)^{1-j/N}} \right| d\lambda < \infty.
$$

Then the solution u of (1.11) given by (3.3) has the following asymptotic behaviour:

1) If $\omega \neq 0$, then

$$
\lim_{t \to \infty} \| u(t) - e^{-i\omega t} I_1(t) - I_2(t) - e^{-i\omega t} u_\omega \|_\mathcal{B} = 0, \quad (3.7)
$$

where

$$
I_1(t) := \sum_{j=1}^{N-1} t^{1-j/N} D_1(1 - \frac{j}{N})(f_j^+ - f_j^-) + i D_2(1 - \frac{j}{N})(f_j^+ + f_j^-)
$$

$$
+ \ln t \cdot (f_N^+ - f_N^-), \quad (3.8)
$$

$$
D_1(\beta) := \frac{\pi}{2\Gamma(\beta+1) \sin \frac{\beta\pi}{2}} \quad \text{for} \quad 0 < \beta < 2, \quad (3.9)
$$

$$
D_2(\beta) := \frac{\pi}{2\Gamma(\beta+1) \cos \frac{\beta\pi}{2}} \quad \text{for} \quad -1 < \beta < 1, \quad (3.10)
$$

$$
I_2(t) := - \sum_{j=1}^{[N_f/2]} t^{1-2j/N_f} \frac{2i D_2(1 - \frac{2j}{N_f})}{\omega} f_j^{(0)}
$$

$$
+ \sum_{j=1}^{[N_u/2]} t^{1-2j/N_u} 2 D_2(1 - \frac{2j}{N_u})(u_1)_j^{(0)}, \quad (3.11)
$$
\[u_\omega := \lim_{\varepsilon \to 0} \left(\int_{|\lambda-\omega|\geq \varepsilon} \frac{1}{\lambda-\omega^2} d(P_\lambda f) \right. \]
\[- \sum_{j=1}^{N-1} \frac{1}{(1 - \frac{j}{N})} \varepsilon^{-j/N} \left(f_j^+ - f_j^- \right) + \ln \varepsilon \cdot \left(f_N^+ - f_N^- \right) \]
\[+ \frac{i\pi}{2} (f_N^+ + f_N^-) + (C_e - \ln(2\omega))(f_N^+ - f_N^-) \quad (3.12)\]

\((C_e := \text{Euler-Mascheroni's constant, the limit has to be taken in } B).\]

2) If \(\omega = 0\), then
\[\lim_{t \to \infty} ||u(t) - I_3(t) - u_0||_B = 0, \quad (3.13)\]

where
\[I_3(t) := \sum_{j=1}^{N-1} t^{2-2j/N} 2D_1(2 - \frac{2j}{N}) f_j^+ + \ln t \cdot 2f_N^+ \]
\[+ \sum_{j=1}^{[N_0/2]} t^{1-2j/N_0} 2D_2(1 - \frac{j}{N_0}) (u_1)_j^{(0)}, \quad (3.14)\]
\[u_0 := \lim_{\varepsilon \to 0} \left(\int_{\varepsilon}^{\infty} \frac{1}{\lambda} d(P_\lambda f) - \sum_{j=1}^{N-1} \frac{f_j^+}{(1 - \frac{j}{N}) 1-j/N} + \ln \delta \cdot f_N^+ \right) \]
\[+ 2C_e f_N^+ \quad (3.15)\]

(the limit has to be taken with respect to the norm in \(B\)).

Proof: Note that
\[D_1(\beta) = \begin{cases} \int_0^\infty \frac{1 - \cos \mu}{\mu^{1+\beta}} d\mu & \text{for } 0 < \beta < 2, \\ \end{cases} \]
\[D_2(\beta) = \begin{cases} \int_0^\infty \frac{\sin \mu}{\mu^{1+\beta}} d\mu & \text{for } -1 < \beta < 1. \end{cases} \quad (3.16)\]

Let \(\varepsilon > 0\) be given. The proof proceeds in several steps.

Step 1: Since \(H\) is supposed to be continuously imbedded in \(B\), we can choose
\[M > \omega^2 + 1, \text{ such that} \]
\[
\left\| \int_M^\infty \psi_\omega(t, \lambda) d(P_\lambda f) + \int_M^\infty \cos \sqrt{\lambda} t d(P_\lambda u_0) + \int_M^\infty \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d(P_\lambda u_1) \right\|^2_B \\
\leq c \left\| \int_M^\infty \psi_\omega(t, \lambda) d(P_\lambda f) + \int_M^\infty \cos \sqrt{\lambda} t d(P_\lambda u_0) + \int_M^\infty \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d(P_\lambda u_1) \right\|^2_H \\
\leq 3c \left(\int_M^\infty 9 d(||P_\lambda f||^2_H) + \int_M^\infty 1 d(||P_\lambda u_0||^2_H) + \int_M^\infty 1 d(||P_\lambda u_1||^2_H) \right) \\
< \varepsilon^2
\]

and
\[
\left\| \int_M^\infty \frac{1}{\lambda - \omega^2} d(P_\lambda f) \right\|_B < \varepsilon.
\]

Step 2: By the Riemann-Lebesgue-Lemma (see e.g., [9]), we have
\[
\left\| \int_0^M \cos \sqrt{\lambda} t d(P_\lambda f) \right\|_B = \left\| \text{Re} \int_0^M e^{i\mu t} \frac{dP_\lambda f}{d\lambda} (\mu^2) 2\mu d\mu \right\|_B < \varepsilon
\]
for \(t > T_1 \). Here and in the following, \(T_1, T_2, \ldots \) denote suitable chosen positive real numbers.

Step 3: By (P2), we can choose \(\delta > 0 \), such that
\[
\left\| \int_0^\delta \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} \left(\frac{dP_\lambda u_1}{d\lambda}(\lambda) - \sum_{j=1}^{[N_{u_1}/2]} \frac{(u_1)_j^{(0)}}{\lambda^{1-j/N_{u_1}}} \right) \right\|_B \\
\leq \int_0^\delta \frac{1}{\sqrt{\lambda}} \left\| \frac{dP_\lambda u_1}{d\lambda}(\lambda) - \sum_{j=1}^{[N_{u_1}/2]} \frac{(u_1)_j^{(0)}}{\lambda^{1-j/N_{u_1}}} \right\|_B d\lambda \\
< \varepsilon.
\]

Riemann-Lebesgue’s Lemma yields as above
\[
\left\| \int_M^\infty \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d(P_\lambda f) \right\|_B < \varepsilon \quad \text{for} \quad t > T_2.
\]

With (3.16), we obtain for \(j \in \{1, \ldots, \left[\frac{N_{u_1}}{2} \right] \} \)
\[
\int_0^\delta \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} \frac{1}{\lambda^{1-j/N_{u_1}}} d\lambda = 2 t^{1-2j/N_{u_1}} \int_0^\infty \frac{\sin \mu}{\mu^{2-2j/N_{u_1}}} d\mu + O\left(\frac{1}{t} \right) \\
= 2 t^{1-2j/N_{u_1}} D_2(1 - \frac{2j}{N_{u_1}}) + O\left(\frac{1}{t} \right)
\]

17
as $t \to \infty$. Combining all estimates of this step, we conclude that
\[
\left\| \int_0^M \frac{\sin \sqrt{\lambda} t}{\sqrt{\lambda}} d(P_\lambda u_1) - \sum_{j=1}^{[N_1/2]} t^{1-2j/N_1} 2D_2(1 - 2j/N_1) (u_j)^{(0)} \right\|_B < 3\varepsilon
\]
for $t > T_3$.

Step 4: From here to Step 6, the case $\omega \neq 0$ will be considered. Note that
\[
\psi_\omega(t, \lambda) = e^{-i\omega t} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} \left(\frac{i \sin \sqrt{\lambda} t}{\omega \sqrt{\lambda}} + \frac{i \sin \sqrt{\lambda} t}{\omega (\sqrt{\lambda} + \omega)} \right)
\]
The same argument used in Step 3 shows that
\[
\left\| \int_0^M \left(\frac{i \sin \sqrt{\lambda} t}{\omega \sqrt{\lambda}} + \frac{i \sin \sqrt{\lambda} t}{\omega (\sqrt{\lambda} + \omega)} \right) d(P_\lambda f) + \sum_{j=1}^{[N_f/2]} t^{1-2j/N} \frac{2i D_2(1 - 2j/N)}{\omega} f_j^{(0)} \right\|_B < \varepsilon
\]
for $t > T_4$.

Step 5: Assumption (P3) implies, that the limit
\[
\mu_\omega := \lim_{\delta \downarrow 0} \left(\int_0^{\omega^2-\delta} \frac{1}{\lambda - \omega^2} \frac{dP_\lambda f}{d\lambda} (\lambda) d\lambda + \sum_{j=1}^{N-1} \frac{f_j^-}{(1 - 4j/N) \delta^1 - j/N - \ln \delta \cdot f_j^-} \right)
\]
exists in B. Choose $\delta > 0$ so small, such that
\[
\left\| \int_0^{\omega^2-\delta} \frac{1}{\lambda - \omega^2} \frac{dP_\lambda f}{d\lambda} (\lambda) d\lambda + \sum_{j=1}^{N-1} \frac{f_j^-}{(1 - 4j/N) \delta^1 - j/N - \ln \delta \cdot f_j^-} - \mu_\omega \right\|_B < \varepsilon
\]
and
\[
\int_{\omega^2-\delta}^{\omega^2} \frac{|1 - e^{-i(\sqrt{\lambda} - \omega)t}|}{|\lambda - \omega^2|} \left\| \frac{dP_\lambda f}{d\lambda} (\lambda) - \sum_{j=1}^{N} \frac{f_j^-}{\lambda - \omega^2} \right\|_B d\lambda < \varepsilon
\]
(see (P3)). Let $\beta \in (0, 1)$ be fixed. Standard calculations (see e.g. [11], (6.2)–(6.9) and the equation following (6.29)) show, that for every $\bar{\varepsilon} > 0$, there exists $\delta(\bar{\varepsilon}) > 0$, such that for every $\delta \in (0, \delta(\bar{\varepsilon}))$ there is an $T_5(\bar{\varepsilon}, \delta) > 0$ with
\[
\left\| \int_0^{\omega^2} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{|\lambda - \omega^2| \beta \delta^3} d\lambda - \frac{1}{\beta \delta^3} + \frac{t^3}{(2\omega)^3} \int_0^{\infty} \frac{1 - e^{i\mu}}{\mu^{1+\beta}} d\mu \right\| < \bar{\varepsilon}
\]
and
\[\left| \int_{\omega^2 - \delta}^{\omega^2} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} d\lambda + \ln \delta + \ln t + C_i - \ln(2\omega) - \frac{i\pi}{2} \right| < \varepsilon \]

for \(t > T_5(\varepsilon, \delta) \). By Riemann-Lebesgue,
\[\left| \int_{0}^{\omega^2 - \delta} \frac{e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} d(P_\lambda f) \right| < \varepsilon \quad \text{for} \ t > T_6, \]

if \(\delta > 0 \) is fixed. This, together with (3.16), proves
\[\left| \int_{0}^{\omega^2} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} d(P_\lambda f) - \mu_\omega - \left(C_i - \ln(2\omega) - \frac{i\pi}{2} \right) f_N^- \right| + \sum_{j=1}^{N-1} t^{1-j/N} D_1(1 - \frac{i}{N}) - iD_2(1 - \frac{i}{N}) \frac{f_j^- + \ln t \cdot f_N^-}{(2\omega)^{1-j/N}} \right| < 5\varepsilon \]

for \(t > T_7 \).

Step 6: As above,
\[\left| \int_{\omega^2}^{\omega^2 + \delta} \frac{1 - e^{-i(\sqrt{\lambda} - \omega)t}}{\lambda - \omega^2} d(P_\lambda f) - \mu_\omega^+ - \left(C_i - \ln(2\omega) + \frac{i\pi}{2} \right) f_N^+ \right| - \sum_{j=1}^{N-1} t^{1-j/N} D_1(1 - \frac{i}{N}) + iD_2(1 - \frac{i}{N}) \frac{f_j^+ + \ln t \cdot f_N^+}{(2\omega)^{1-j/N}} \right| < \varepsilon \]

for \(t > T_8 \) with
\[\mu_\omega^+ := \lim_{\delta \to 0} \left(\int_{\omega^2 + \delta}^{\omega^2} \frac{1}{\lambda - \omega^2} dP_\lambda f(\lambda) d\lambda - \sum_{j=1}^{N-1} \frac{f_j^+}{(1 - \frac{i}{N}) \delta^{1-j/N}} + \ln \delta \cdot f_N^+ \right) \]

is proved. Combining the results of Step 1 to Step 6, we obtain that (3.7) holds.

The case \(\omega = 0 \) is proved in the same way by
\[\left| \int_{0}^{\delta} \frac{1 - \cos \sqrt{\lambda} t}{\lambda^{1+\beta}} d\lambda - 2\beta \int_{0}^{\infty} \frac{1 - \cos \mu}{\mu^{1+2\beta}} d\mu + \frac{1}{\beta \delta^\beta} \right| < \varepsilon \quad (\beta \in (0, 1)), \]
\[\left| \int_{0}^{\delta} \frac{1 - \cos \sqrt{\lambda} t}{\lambda} d\lambda - 2 \ln t - \ln \delta - 2C_i \right| < \varepsilon \]

for \(t > T_9(\varepsilon, \delta) \) (use (3.67) in [15]). \[\square \]
Corollary 3.3 (Regularity estimates) Let all Assumptions of Theorem 3.2 be satisfied. In addition, suppose that \(u_0 \in D(A^k) \), \(u_1 \in D(A^{k-1/2}) \), \(f \in D(A^{k-1}) \) for a fixed \(k \in \mathbb{N} \). Denote by \(u \) the solution of \((1.11)\).

1) **General case**: If \(\omega \neq 0 \), then

\[
\lim_{t \to \infty} \| A^j u(t) - e^{-i\omega t} \omega^{2j} I_1(t) - e^{-i\omega t} u_\omega(j) \|_B = 0 \quad \text{for} \quad j = 1, 2, \ldots, k
\]

(3.17)

with \(I_1(t) \) being defined in Theorem 3.2 and

\[
u_\omega(j) := \lim_{\varepsilon \to 0} \left(\int_{|\lambda - \omega^2| \geq \varepsilon} \frac{\lambda^j}{\lambda - \omega^2} d(P_\lambda f) - \sum_{l=1}^{N-1} \left(1 - \frac{1}{N} \right) \varepsilon^{1-l/N} (f_l^+ + f_l^-) + \ln \varepsilon \cdot \omega^{2j} (f_N^- - f_N^+) \right) + \frac{i\pi}{2} \omega^{2j} (f_N^- + f_N^+) + \omega^{2j} (C_e - \ln(2\omega)) (f_N^- - f_N^+)
\]

(3.18)

\((j \leq k)\), where the limit has to be taken in \(B \). If \(\omega = 0 \), then

\[
\lim_{t \to \infty} \| A^j u(t) - A^{j-1} f \|_B = 0 \quad \text{for} \quad j = 1, 2, \ldots, k.
\]

(3.19)

2) **Principle of limiting Amplitude**: Suppose that additionally \(N_f = N_{u_1} = 0 \) in (P2) of Theorem 3.2 and that \(N = 1 \), \(f_1^+ = f_1^- (= \frac{dP_\lambda f}{d\lambda}(\omega^2)) \) in (P3). Then

\[
\lim_{t \to \infty} \| A^j u(t) - e^{-i\omega t} u_\omega(j) \|_B = 0 \quad \text{for} \quad j = 0, 1, \ldots, k
\]

(3.20)

with

\[
u_\omega(j) := \lim_{\varepsilon \to 0} \int_{|\lambda - \omega^2| \geq \varepsilon} \frac{\lambda^j}{\lambda - \omega^2} d(P_\lambda f) + i\pi \omega^{2j} f_1^+
\]

(3.21)

\((j \leq k)\). The limit in (3.21) has to be taken in \(B \).

Proof: For the first part, use the arguments of the proof of Theorem 3.2. The additional assumption is needed only in Step 1. From Step 2 on, replace \(\frac{dP_\lambda f}{d\lambda}(\lambda) \) by \(\lambda^k \frac{dP_\lambda f}{d\lambda}(\lambda) \).

The assertion of the second part follows directly from part 1, if \(j \geq 1 \). The case \(j = 0 \) is obtained from Theorem 3.2. Note that \(f_1^+ = f_1^- = 0 \) if \(\omega = 0 \), since \(P_\lambda f = 0 \) for \(\lambda \leq 0 \). \(\Box \)
The following theorem characterizes the limiting amplitude (3.21) by the principle of limiting absorption.

Theorem 3.4 Suppose that \(\mathcal{A} \) is a positive and self-adjoint operator in the Hilbert space \(\mathcal{H} \) and that \(\mathcal{A} \) obeys the condition (P1) given before Theorem 3.2. Let \(\omega \geq 0 \) and \(f \in \mathcal{B} \) be given and assume that (P3) of Theorem 3.2 is satisfied with \(N = 1 \) and \(f_1^+ = f_1^- \). Then \(u^{(0)}_\omega \) defined by (3.21) exists in \(\mathcal{B} \) and

\[
\lim_{\tau \downarrow 0} \| R_{\omega^2 + i\tau} f - u^{(0)}_\omega \|_\mathcal{B} = 0. \tag{3.22}
\]

Proof: Conclude from (P1) and (P3) (with \(N = 1 \) and \(f_1^+ = f_1^- \)), that the limit \(u^{(0)}_\omega \) exists in \(\mathcal{B} \). Recall that

\[
R_{\omega^2 + i\tau} f = \int_0^\infty \frac{1}{\lambda - \omega^2 - i\tau} d\lambda \mathcal{A}_\lambda f.
\]

Let \(\varepsilon > 0 \) be given. Choose \(\delta > 0 \), such that

\[
\left\| \int_{\omega^2 - \delta}^{\omega^2 + \delta} \frac{1}{\lambda - \omega^2 - i\tau} \left(\frac{d\lambda \mathcal{A}_\lambda f}{d\lambda} - f_1^- \right) d\lambda \right\|_\mathcal{B} < \varepsilon
\]

and

\[
\left\| \int_{|\lambda - \omega^2| \geq \delta} \frac{1}{\lambda - \omega^2} d\lambda \mathcal{A}_\lambda f + i\pi f_1^- - u^{(0)}_\omega \right\|_\mathcal{B} < \varepsilon
\]

with \(u^{(0)}_\omega \) being defined by (3.21). There exists \(\tau_0 > 0 \), such that for \(\tau \in (0, \tau_0) \)

\[
\left\| \int_{|\lambda - \omega^2| \geq \delta} \frac{1}{\lambda - \omega^2 - i\tau} d\lambda \mathcal{A}_\lambda f - \int_{|\lambda - \omega^2| \geq \delta} \frac{1}{\lambda - \omega^2} d\lambda \mathcal{A}_\lambda f \right\|_\mathcal{B} < \varepsilon
\]

and

\[
\left\| \int_{\omega^2 - \delta}^{\omega^2 + \delta} \frac{1}{\lambda - \omega^2 - i\tau} f_1^+ d\lambda - i\pi f_1^+ \right\|_\mathcal{B} < \varepsilon.
\]

This proves (3.22). \(\square \)
4 Spectral properties of elastic operator

Let \(\Omega \subset \mathbb{R}^n \) be given by (1.3) and set

\[
D(\mathcal{A}) := \{ \varphi \in \mathring{H}^1(\Omega)^n : (\Delta + c_0 \text{grad div}) \varphi \in L_2(\Omega)^n \},
\]

\[
\mathcal{A} \varphi := -(\Delta + c_0 \text{grad div}) \varphi \quad \text{for} \; \varphi \in D(\mathcal{A}),
\]

(4.1)

where \(c_0 > -1 \) is supposed, the derivatives have to be taken in distributional sense and \(\mathring{H}^1(\Omega) \) denotes the closure of \(C_0^\infty(\Omega) \) in \(H^1(\Omega) \). Standard calculations show that

\[
\langle \mathcal{A} \varphi, \varphi \rangle \geq \min \{1, 1 + c_0\} \left(||\varphi||_1^2 - ||\varphi||_0^2 \right) \quad \text{for} \; \varphi \in D(\mathcal{A})
\]

(4.2)

(\(||\cdot||_k \) := norm in \(H^k(\Omega)^n \)) and that \(\mathcal{A} \) is self-adjoint in \(L_2(\Omega)^n \).

Note that \(L_2(\Omega)^n = L_2(\mathbb{R}, L_2(D))^n \), since \(\Omega \) is given by (1.3). In this section we define an operator family \(\{ A(\xi) \}_{\xi \in \mathbb{R}} \) in \(L_2(D) \), such that \(\mathcal{A} \) can be represented by (1.9). We show that the theory developed in section 2 can be applied to obtain a representation of the spectral family of \(\mathcal{A} \).

Let the variable in \(D \) be denoted by \((x_2, \ldots, x_n)\) and set

\[
\text{grad}_D := (\partial_2, \ldots, \partial_n)^T, \quad \text{div}_D := (\partial_2, \ldots, \partial_n), \quad \Delta_D := \partial_2^2 + \ldots + \partial_n^2.
\]

Consider the dyadic product \(\text{grad}_D \text{div}_D \) defining a \((n - 1) \times (n - 1)\)-matrix. The \(n \times n \)-matrix given by

\[
\begin{pmatrix}
-\xi^2 & i\xi \text{div}_D \\
i\xi \text{grad}_D & \text{grad}_D \text{div}_D
\end{pmatrix}
\]

contains \((-\xi^2, i\xi \partial_2, i\xi \partial_3, \ldots, i\xi \partial_n)\) in the first line and \((-\xi^2, i\xi \partial_2, i\xi \partial_3, \ldots, i\xi \partial_n)^T\) in the first column. E.g., in the case \(n = 3 \),

\[
\begin{pmatrix}
-\xi^2 & i\xi \partial_2 & i\xi \partial_3 \\
i\xi \partial_2 & i\xi \partial_2^2 & i\xi \partial_2 \partial_3 \\
i\xi \partial_3 & i\xi \partial_3 \partial_2 & i\xi \partial_3^2
\end{pmatrix}
\]
Define the operator $A(\xi)$ for $\xi \in \mathbb{R}$ by

$$
D(A(\xi)) := \left\{ \varphi \in \hat{H}^1(D)^n : \left(\Delta_D + c_0 \begin{pmatrix} 0 & 0 \\ 0 & \text{grad}_D \text{div}_D \end{pmatrix} \right) \varphi \in L_2(D)^n \right\},
$$

$$
A(\xi)\varphi := -\left(\Delta_D - \xi^2 + c_0 \begin{pmatrix} -\xi^2 & i\xi \text{grad}_D \\ i\xi \text{grad}_D & \text{grad}_D \text{div}_D \end{pmatrix} \right) \varphi \quad \text{for } \varphi \in D(A(\xi)).
$$

(4.3)

Let $\xi \in \mathbb{R}$ be fixed. As above,

$$
\langle A(\xi)\varphi, \psi \rangle_D \geq \min\{1, 1 + c_0\} \left(\sum_{j=1}^n \|\text{grad}_D \varphi_j\|^2_D + \xi^2 \|\varphi\|^2_D \right) \geq 0
$$

(4.4)

for $\varphi = (\varphi_1, \ldots, \varphi_n) \in D(A(\xi))$ is proved. Furthermore, $A(\xi)$ is self-adjoint in $L_2(D)^n$.

Lemma 4.1 Suppose that D has the segment property and that $A(\xi)$ is defined by (4.3). Then:

1) For every fixed $\xi \in \mathbb{R}$, $A(\xi)$ has an orthonormal system of eigenfunctions $\{v_j(\xi)\}_{j \in \mathbb{N}}$ being complete in $L_2(D)^n$. Eigenfunctions and associated eigenvalues $\{\lambda_j(\xi)\}_{j \in \mathbb{N}}$ can be chosen in a way, such that for every fixed $j \in \mathbb{N}$ the mappings $\xi \mapsto v_j(\xi)$, $\xi \mapsto \lambda_j(\xi)$ are analytic on \mathbb{R}.

2) For every $\xi \in \mathbb{R}$, $\lambda_j(\xi) > 0$ for $j \in \mathbb{N}$ and $\lambda_j(\xi) \to \infty$ as $j \to \infty$.

3) For every $j \in \mathbb{N}$, there exists $k \in \mathbb{N}$, such that $\lambda_j(\xi) = \lambda_k(-\xi)$ for $\xi \in \mathbb{R}$.

Proof: Let $\xi \in \mathbb{R}$ be fixed. Using Rellich’s selection theorem, one obtains from (4.4) that $(A(\xi) + \text{Id})^{-1} : L_2(D)^n \to L_2(D)^n$ is compact. Furthermore this operator is symmetric and positive. The theory of compact symmetric operators shows that $(A(\xi) + \text{Id})^{-1}$ has an orthonormal system $\{v_1(\xi), v_2(\xi), \ldots\}$ of eigenfunctions being complete in $L_2(D)^n$. Denote by $\mu_j(\xi)$ the eigenvalue of $(A(\xi) + \text{Id})^{-1}$ associated to $v_j(\xi)$ ($j \in \mathbb{N}$). Then $\mu_j(\xi) \downarrow 0$ as $j \to \infty$. The operator $A(\xi)$ has the same eigenfunctions with associated eigenvalues $\lambda_j(\xi) = \frac{1 - \mu_j(\xi)}{\mu_j(\xi)} \to \infty$ as $j \to \infty$.

23
Now let $\xi \in \mathbb{R}$ vary. In the notation of [10], \(\{A(\xi)\} \) is a self-adjoint holomorphic operator family of type (A) with compact resolvent. According to Theorem 3.9 of Chapter VII there, eigenvalues and eigenfunctions can be chosen in a way, such that they depend analytically on ξ. Since the graphs of $\lambda = \lambda_j(\xi)$ may intersect, enumeration has to be changed eventually. Note that this change doesn’t touch the property $\lambda_j(\xi) \to \infty$ as $j \to \infty$ for fixed $\xi \in \mathbb{R}$. Finally, $\lambda_j(\xi) > 0$ is obtained from (4.4) and from $D(A(\xi)) \subset \hat{H}^1(D)^n$.

Fix $j_0 \in \mathbb{N}$ and consider $u_{j_0}(\xi) = (u_{0j_0}(\xi), \ldots, u_{nj_0}(\xi))^T$, where $u_D := (v_{j_02}, \ldots, v_{jn})^T$. From $A(\xi)(u_{j_0}(\xi)) = \lambda_{j_0}(\xi)(u_{j_0}(\xi))$ and the definition of $A(\xi)$,

$$A(-\xi)\begin{pmatrix} -u_1(\xi) \\ u_D(\xi) \end{pmatrix} = \lambda_{j_0}(\xi)\begin{pmatrix} -u_1(\xi) \\ u_D(\xi) \end{pmatrix}$$

follows. In particular, for every $\xi > 0$, there exists $j \in \mathbb{N}$, such that $\lambda_j(-\xi) = \lambda_{j_0}(\xi)$. This implies, that there is at least one $j \in \mathbb{N}$, such that $\lambda_j(-\xi) = \lambda_{j_0}(\xi)$ for more than countable many values of $\xi \in [0, 1]$. Hence $\lambda_j(-\xi) = \lambda_{j_0}(\xi)$ for $\xi \in \mathbb{R}$ by analyticity of λ_j and λ_{j_0}.

\section*{Lemma 4.2}

Suppose that ∂D has the segment property and let $\{\lambda_j(\xi)\}_{j \in \mathbb{N}}$ denote the eigenvalues of $A(\xi)$ given by Lemma 4.1. Then

$$\lambda_{\min} := \min \{\lambda_j(\xi) : j \in \mathbb{N}, \xi \in \mathbb{R}\} > 0. \quad (4.5)$$

Furthermore, for every $\lambda \geq \lambda_{\min}$, equation $\lambda_j(\xi) = \lambda$ admits only finitely many solutions $(j, \xi) \in \mathbb{N} \times \mathbb{R}$.

\textbf{Proof:} It is sufficient to consider $\lambda_j(\xi)$ with $\xi \geq 0$ according to Item 3 of Lemma 4.1.

Note that

$$2\Re \left< A(\xi)v_j(\xi), \frac{d}{d\xi}v_j(\xi) \right>_D = \lambda_j(\xi) \frac{d}{d\xi} ||v_j(\xi)||^2_D = \lambda_j(\xi) \frac{d}{d\xi} 1 = 0 \quad \text{for} \quad \xi \in \mathbb{R}.$$
From this, one obtains with \(v_j(\xi) = \left(\frac{u_j(\xi)}{u_D(\xi)} \right) \) and \(\xi \geq 0 \) that
\[
\frac{d}{d\xi} \lambda_j(\xi) = \frac{d}{d\xi} \left\langle A(\xi)v_j(\xi), v_j(\xi) \right\rangle_D \\
= 2\Re \left\langle A(\xi)v_j(\xi), \frac{d}{d\xi} v_j(\xi) \right\rangle_D + 2\xi \|v_j(\xi)\|^2_D \\
- c_0 \left\langle \left(-2\xi u_1(\xi) + i \text{div}_{D} u_D(\xi) \right)^T \left(\frac{u_1(\xi)}{u_D(\xi)} \right) \right\rangle_D \\
= 2\xi (\|v_j(\xi)\|^2_D + c_0 \|u_1(\xi)\|^2_D) + 2c_0 \Im \left\langle \text{grad}_{D} u_1(\xi), u_D(\xi) \right\rangle_D \\
\geq -|c_0| (\|\text{grad}_{D} u_1(\xi)\|^2_D + \|u_D(\xi)\|^2_D) \\
\geq -|c_0| (\|\text{grad}_{D} u_1(\xi)\|^2_D + 1),
\]
since \(\|u_D(\xi)\|^2_D \leq \|v_j(\xi)\|^2_D = 1 \). Inequality (4.4) implies that
\[
\|\text{grad}_{D} u_1(\xi)\|^2_D \leq \frac{1}{\min\{1, 1 + c_0\}} \left\langle A(\xi)v_j(\xi), v_j(\xi) \right\rangle_D = \frac{\lambda_j(\xi)}{\min\{1, 1 + c_0\}}.
\]
Hence
\[
\frac{d}{d\xi} \lambda_j(\xi) \geq -|c_0| \frac{|c_0|}{\min\{1, 1 + c_0\}} \lambda_j(\xi) = -|c_0| - c_1 \lambda_j(\xi)
\]
follows. Application of Gronwall's Lemma yields
\[
\lambda_j(\xi) \geq \lambda_j(0) e^{-c_1 \xi} - |c_0| \int_0^\xi e^{-c_1 (\xi-s)} \, ds = \left(\lambda_j(0) + \frac{|c_0|}{c_1} \right) e^{-c_1 \xi} - \frac{|c_0|}{c_1} \quad (4.6)
\]
for \(\xi \geq 0 \). (Set \(\varphi(\xi) := e^{c_1 \xi} \lambda_j(\xi) \) and integrate the resulting differential inequality.)

In order to prove Lemma 4.2, it is convenient to search for eigenvalues \(\lambda_j(\xi) \) being smaller than some given \(\lambda \geq 0 \). From (4.4) one obtains that
\[
\lambda_j(\xi) = \left\langle A(\xi)v_j(\xi), v_j(\xi) \right\rangle_D \geq \min\{1, 1 + c_0\} \xi^2 \|v_j(\xi)\|^2_D = \min\{1, 1 + c_0\} \xi^2
\]
and hence
\[
\lambda_j(\xi) > \lambda \quad \text{for } j \in \mathbb{N}, \xi \geq \sqrt{\frac{\lambda}{\min\{1, 1 + c_0\}}} = c_2.
\]
If \(\xi \in [0, c_2] \), then (4.6) implies that
\[
\lambda_j(\xi) \geq \left(\lambda_j(0) + \frac{|c_0|}{c_1} \right) e^{-c_1 \xi} - \frac{|c_0|}{c_1} > \lambda \quad \text{for } j > J_0
\]
with suitable chosen $J_0 \in \mathbb{N}$ since $\lambda_j(0) \to \infty$ as $j \to \infty$. Hence equation $\lambda_j(\xi) = \lambda$ admits only solutions $(j, \xi) \in \mathbb{N} \times \mathbb{R}$ with $j \leq J_0$ and $\xi \in [0, \omega_2]$. By the analyticity of $\lambda_j(\cdot)$, both assertions of Lemma 4.2 follow. \hfill \Box

Lemma 4.3 Let $\Omega \subset \mathbb{R}^n$ be given by (1.3), where D is supposed to have the segment property. Set $H := L_2(\Omega)^n = L_2(\mathbb{R}, H)$ with $H = L_2(D)^n$ and denote by $\mathcal{F} : \mathcal{H} \to \mathcal{H}$ the Fourier-transform (see (1.8)). Then

$$\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} = \int_\mathbb{R} \Theta A(\xi) d\xi =: \widehat{\mathcal{A}} \quad (4.8)$$

with \mathcal{A} and $A(\xi)$ being defined by respectively (4.1) and (4.3).

Proof: For every $\varphi, \psi \in L_2(D)^n$, the mapping $\xi \mapsto \langle \varphi, (A(\xi) + \text{Id})^{-1} \psi \rangle_D$ is continuous on \mathbb{R} by Lemma 4.1, and hence measurable. This shows that $\int_\mathbb{R} \Theta A(\xi) d\xi$ is defined. It is sufficient to prove $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} \subset \widehat{\mathcal{A}}$. This implies that $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} = \widehat{\mathcal{A}}$, since both operators are self-adjoint. (For the case of $\widehat{\mathcal{A}}$ see Theorem XIII.85 in [14].) Suppose that $f \in D(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1})$, which means that $\mathcal{F}^{-1}f \in D(\mathcal{A})$. Since $D(\mathcal{A}) \subset \dot{H}^1(\Omega)^n$, there exists a sequence $\{\varphi_j\}$ in $C_0^\infty(\Omega)^n$ with

$$\|\varphi_j - \mathcal{F}^{-1}f\|_{H^1(\Omega)^n} \to 0 \quad \text{as } j \to \infty.$$

Since \mathcal{F} is norm-invariant and commutes with derivatives with respect to x_2, \ldots, x_n, this implies that

$$\int_\mathbb{R} \|((\mathcal{F} \varphi_j)(\xi) - f(\xi))\|_{H^1(D)^n}^2 d\xi \to 0 \quad \text{as } j \to \infty.$$

There exists a subsequence of $\{\varphi_j\}$, again denoted by $\{\varphi_j\}$, such that

$$\|((\mathcal{F} \varphi_j)(\xi) - f(\xi))\|_{H^1(D)^n}^2 \to 0 \quad \text{as } j \to \infty \text{ a.e. on } \mathbb{R}.$$

Note that $(\mathcal{F}f)(\xi) \in C_0^\infty(D)^n$ for every $\xi \in \mathbb{R}$. Hence $f(\xi) \in \dot{H}^1(D)^n$ a.e. for $\xi \in \mathbb{R}$.

If $\varphi \in C_0^\infty(\Omega)^n$, then $(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1})\varphi(\xi) = \mathcal{A}(\xi)\varphi(\xi, \cdot)$ and

$$\langle \mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}f, \varphi \rangle_\Omega = \langle f, \mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}\varphi \rangle_\Omega = \int_\mathbb{R} \langle \mathcal{F}(\xi), \mathcal{A}(\xi)\varphi(\xi, \cdot) \rangle_D d\xi$$

$$= \int_\mathbb{R} \left\langle \left(-\Delta_D + \xi^2 - \omega_0 \left(\begin{array}{c} -\xi^2 \\ \text{grad}_D \\ \text{div}_D \end{array} \right) \right) f(\xi), \varphi(\xi, \cdot) \right\rangle_D d\xi$$
by the symmetry of $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1}$, Fubini's theorem and definition of weak derivative. Again using Fubini's theorem, one obtains that

$$\left(-\Delta_D + \xi^2 - c_0 \left(\frac{-\xi^2}{\xi^{\text{grad}_D}} \frac{i\xi^{\text{div}_D}}{\text{grad}_D \text{div}_D} \right) \right) f(\xi) = (\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi) \in L_2(D)^n$$

a.e. for $\xi \in \mathbb{R}$, and hence that $f(\xi) \in D(\mathcal{A}(\xi))$ and $A(\xi)f(\xi) = (\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi)$ a.e. for $\xi \in \mathbb{R}$. Furthermore,

$$\int_{\mathbb{R}} \|A(\xi)f(\xi)\|^2_D \, d\xi = \int_{\mathbb{R}} \|(\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi)\|^2_D \, d\xi < \infty$$

follows. This implies that $f \in D(\hat{\mathcal{A}})$ and

$$(\hat{\mathcal{A}} f)(\xi) = A(\xi)f(\xi) = (\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} f)(\xi) \quad \text{a.e. for } \xi \in \mathbb{R},$$

which concludes the proof of $\mathcal{F} \circ \mathcal{A} \circ \mathcal{F}^{-1} \subset \hat{\mathcal{A}}$. \hfill \Box

The following corollary is obtained from Lemmata 4.1, 4.2, 4.3 and from (4.4), (4.7):

Corollary 4.4 Suppose that $D \subset \mathbb{R}^{n-1}$ is bounded and has the segment property. Then:

1) The operator family $\{A(\xi)\}_{\xi \in \mathbb{R}}$ given by (4.3) satisfies Assumptions (A1) - (A4) (see page 4).

2) All assertions of Theorem 2.3 are valid for spectrum and spectral family of the operator \mathcal{A} given by (4.1).

5 Elastic wave equation

We study the long-time behaviour of u solving (1.2). L_2-estimates are given by Theorem 5.1, if u is a strong solution. Pointwise estimates of the classical solution are presented in Theorem 5.2.
In Section 2, Banach-spaces $H_s = L_2^{(s)}(\mathbb{R}, H)$ with associated norm $\|\cdot\|_s$ ($s \in \mathbb{R}$) were defined (see (2.10)). In the following application, $H := L_2(D)^n$ has to be set, since $\Omega = \mathbb{R} \times D$. Note that

$$H_s = H_0^0(\Omega)^n, \quad \|\cdot\|_s \text{ is equivalent to } \|\cdot\|_{0,s},$$

where

$$H_s^k(\Omega)^n := \left\{ \varphi \in H_s^k(\Omega)^n : \|\varphi\|_{k,s} < \infty \right\},$$

$$\|\varphi\|_{k,s} := \left(\int_{\Omega} (1 + |x|^2)^s \left(\sum_{|\alpha| \leq k} |D^\alpha \varphi(x)|^2 \right) \, dx \right)^{1/2}$$

(5.1)

($k \in \mathbb{N}_0$, $s \geq 0$).

Theorem 5.1 Let $\Omega \subset \mathbb{R}^n$ be given by (1.3) with D having the segment property, and let A be the elastic spatial operator defined by (4.1). Denote by u the solution of (1.11) (with $H := L_2(\Omega)^n$), where

$$\omega \geq 0, \quad u_0 \in D(A), \quad u_1 \in D(A^{1/2}), \quad f \in L_2(\Omega)^n$$

is supposed.

1) **Principle of limiting amplitude:** If, in addition to (5.2), $\omega^2 \notin \sigma_{\text{res}}(A)$ (see (2.2)) and $u_0, u_1, f \in H_s^0(\Omega)^n$ for some $s > \frac{1}{2}$, then

$$u(t) = e^{-\omega t} u_\omega + r(t),$$

(5.3)

where

$$\|r(t)\|_{0,s'} = o(1) \quad \text{as } t \to \infty$$

(5.4)

for every $s' > \frac{1}{2}$ and $u_\omega := u_0^{(0)}$ is given by (3.21) (with $B := H_s^{\omega'}(\Omega)^n$).

2) **Resonance case:** If, in addition to (5.2), $\omega^2 = \sigma_p \in \sigma_{\text{res}}(A)$ and $u_0, u_1, f \in H_s^0(\Omega)^n$ for some $s > N_p + \frac{1}{2}$ (see (2.14)), then resonance of order t^{1-N_p}
occurs. In particular,

\[u(t) = e^{-i\omega t} \sum_{(j,k) \in K^+ (\sigma_p)} \left(\sum_{l=1}^{N(j,k,p)-1} t^{1-l/N(j,k,p)} \times \right. \]
\[\left. \times \frac{D_1(1 - \frac{l}{N(j,k,p)}) + iD_2(1 - \frac{l}{N(j,k,p)})}{(2\omega)^{1-l/N(j,k,p)}} Q_{j,k,p}(f) \right) + \ln t \cdot Q_{j,k,p}(f)(\tilde{f}) \]
\[- e^{-i\omega t} \sum_{(j,k) \in K^- (\sigma_p)} \left(\sum_{l=1}^{N(j,k,p)-1} t^{1-l/N(j,k,p)} \times \right. \]
\[\left. \times \frac{D_1(1 - \frac{l}{N(j,k,p)}) - iD_2(1 - \frac{l}{N(j,k,p)})}{(2\omega)^{1-l/N(j,k,p)}} Q_{j,k,p}(f) \right) + \ln t \cdot Q_{j,k,p}(f)(\tilde{f}) \right) + e^{-i\omega t} u_\omega + r(t), \quad (5.5) \]

where \(r \) satisfies (5.4) for every \(\varepsilon > N_p + \frac{1}{2} \) and where at least one term of order \(t^{1-1/N(j,k,p)} \) with \(N(j,k,p) = N_p \) does not vanish and is not cancelled out by other terms, if \(f \) is chosen suitable. Furthermore, \(u_\omega \) is given by

\[u_\omega = \lim_{\varepsilon \downarrow 0} \left(\int_{|\lambda - \sigma_p| \geq \varepsilon} \frac{1}{\lambda - \sigma_p} d(P_\lambda f) \right. \]
\[\left. - \sum_{(j,k) \in K^+ (\sigma_p)} \left(\sum_{l=1}^{N(j,k,p)-1} \frac{1}{1 - \frac{l}{N(j,k,p)}} \varepsilon^{1-l/N(j,k,p)} Q_{j,k,p}(f) \right) \right. \]
\[\left. + \left(\frac{i\pi}{2} + C_e - \ln(2\omega) \right) Q_{j,k,p}(f)(\tilde{f}) \right) \]
\[+ \sum_{(j,k) \in K^- (\sigma_p)} \left(\sum_{l=1}^{N(j,k,p)-1} \frac{1}{1 - \frac{l}{N(j,k,p)}} \varepsilon^{1-l/N(j,k,p)} Q_{j,k,p}(f) \right) \]
\[\left. + \left(\frac{i\pi}{2} - C_e + \ln(2\omega) \right) Q_{j,k,p}(f)(\tilde{f}) \right) \right), \quad (5.6) \]

where the limit has to be taken in \(H^0_{\lambda'}(\Omega)^n \) for \(\lambda' > N_p + \frac{1}{2} \).
Proof: According to Corollary 4.4, the spectral family of A and its properties are given by (2.12), (2.13) and (2.15). Application of Corollary 3.3, Part 2 (with $k = 1$ and $\hat{B} := H_{s} = H_{s}^{0}(\Omega)$, $\hat{B} := H_{-s} = H_{-s}^{0}(\Omega)$) yields (5.3) and (5.4). From Item 1 of Theorem 3.2, (5.5) with (5.4) and (5.6) is obtained.

It remains to prove, that resonance of order $t^{1-1/N_{p}}$ occurs, if f is chosen suitable. Note that every term on the right-hand side of (5.5) with $N(j, k; p) < N_{p}$ or with $l > 1$ grows slower than $t^{1-1/N_{p}}$. Thus only summands with $N(j, k; p) = N_{p}$ and $l = 1$ have to be studied. Choose one pair $(j_{0}, k_{0}) \in K^{+}(\sigma_{p}) \cup K^{-}(\sigma_{p})$ such that $N(j_{0}, k_{0}; p) = N_{p}$. Furthermore, choose $f \in H_{0}^{0}(\Omega)$ such that $(\langle F f \rangle(r_{j_{0}k_{0}}(\sigma_{p})), v_{j_{0}}(r_{j_{0}k_{0}}(\sigma_{p}))) \neq 0$ (Note that it is possible to suppose $f \in C_{0}^{\infty}(\Omega)$). Then $Q_{j_{0}k_{0}p}(f) \neq 0$ according to (2.16). The associated resonance term is not cancelled out by the other terms on the right-hand side of (5.5), which will be shown in the following.

Consider another pair $(j, k) \in K^{+}(\sigma_{p}) \cup K^{-}(\sigma_{p})$ with $N(j, k; p) = N_{p}$. If $r_{jk}(\sigma_{p}) \neq r_{j_{0}k_{0}}(\sigma_{p})$, then $Q_{jk}p(f)$ and $Q_{j_{0}k_{0}p}(f)$ are linearly independent due to the factor $e^{i\pi r_{jk}(\sigma_{p})}$ in the definition (2.16) of $Q_{jk}p(f)$. If $r_{jk}(\sigma_{p}) = r_{j_{0}k_{0}}(\sigma_{p})$ and $j \neq j_{0}$, then $Q_{jk}p(f)$ and $Q_{j_{0}k_{0}p}(f)$ are again linearly independent, since $(v_{j}(r_{j_{0}k_{0}}(\sigma_{p})))_{j \in \mathbb{N}}$ is supposed to be an orthonormal system. It remains to consider the case $r_{jk}(\sigma_{p}) = r_{j_{0}k_{0}}(\sigma_{p})$ and $j = j_{0}$. In this case, $k = k_{0} \pm 1$ according to Item 4 of Lemma 2.1 and construction of r_{jk}. Furthermore $Q_{jk}p(f) = Q_{j_{0}k_{0}p}(f)$ holds (see (2.9) and (2.16)). If $(j, k, (j_{0}, k_{0}))$ are contained in the same set $K^{+}(\sigma_{p})$ (or respectively $K^{-}(\sigma_{p})$), then both associated summands in (5.5) lead to the same resonance term, so that the factor of $t^{1-1/N_{p}}Q_{j_{0}k_{0}p}(f)$ is multiplied by two. If e.g., $(j, k) \in K^{+}(\sigma_{p})$ and $(j_{0}, k_{0}) \in K^{-}(\sigma_{p})$, then the factor of $t^{1-1/N_{p}}Q_{j_{0}k_{0}p}(f)$ is given by

$$
\frac{D_{1}(1 - \frac{1}{N_{p}}) + i D_{2}(1 - \frac{1}{N_{p}})}{(2\omega)^{1-1/N_{p}}} - \frac{D_{1}(1 - \frac{1}{N_{p}}) - i D_{2}(1 - \frac{1}{N_{p}})}{(2\omega)^{1-1/N_{p}}} = 2i \frac{D_{2}(1 - \frac{1}{N_{p}})}{(2\omega)^{1-1/N_{p}}} \neq 0.
$$

The same happens if $(j, k) \in K^{-}(\sigma_{p})$ and $(j_{0}, k_{0}) \in K^{+}(\sigma_{p})$.

\[\square\]
Theorem 5.2 Let Ω and A be given by respectively (1.3) and (4.1). Suppose that
$\omega \geq 0$ and that
\[
\partial D \in C^K, \quad u_0 \in D(A^{K'}) \quad u_1 \in D(A^{K'-1/2}) \quad f \in D(A^{K'-1}) \tag{5.7}
\]
for some $K > \frac{r}{2} + 2$, $K' > \frac{n}{4} + 1$. Then Problem (1.2) has a solution
$u \in C^2([0, \infty) \times \Omega)$. It is the only solution of (1.2) satisfying
\[
u \in C^2([0, \infty), L_2(\Omega)), \quad u(t) \in D(A) \text{ for } t \geq 0. \tag{5.8}
\]
Furthermore the following asymptotic estimates hold:

1) **Principle of limiting amplitude:** If, in addition to (5.7), $\omega^2 \not\in \sigma_{\text{res}}(A)$ and
$u_0, u_1, f \in H^s_0(\Omega)^n$ for some $s > \frac{1}{2}$, then
\[
u(t, x) = e^{-\omega t} u_\omega(x) + r(t, x), \tag{5.9}
\]
where $u_\omega \in C^2(\overline{\Omega})$ is solution of (1.6) and, for every $s' > \frac{1}{2}$,
\[
\frac{1}{(1 + |x|^2)^{s'/2}} r(t, x) = o(1) \quad \text{as } t \to \infty, \text{ uniformly with respect to } x \in \overline{\Omega}. \tag{5.10}
\]

2) **Resonance case:** If, in addition to (5.8), $\omega^2 \in \sigma_{\text{res}}(A)$ and $u_0, u_1, f \in H^s_0(\Omega)^n$
for some $s > N_p + \frac{1}{2}$, then u satisfies (5.5) pointwise with respect to $x \in \overline{\Omega}$,
where $r(t, x)$ obeys (5.10) for every $s' > N_p + \frac{1}{2}$ and $u_\omega \in C^2(\overline{\Omega})$ solves (1.6).

For the proof, the following lemma is needed. It can be found in [7], but without proof. For the idea of the proof see e.g. Hilfssatz 1.15 in [12].

Lemma 5.3 Set $D := -(\Delta + c_0 \text{ grad div})$ (in distributional sense) and
$\mathcal{H}^s_0(\Omega)^n :=$ completion of $C^s_0(\Omega)^n$ in $H^s_0(\Omega)^n$ ($s \geq 0$). Suppose that Ω is given by (1.3) with
$\partial D \in C^K$ for some $K \geq 2$ and that $\varphi \in H^s_0(\Omega)^n$ satisfies
\[
D^j \varphi \in \mathcal{H}^s_0(\Omega)^n \quad \text{for } j = 0, 1, \ldots, K' - 1, \quad D^K \varphi \in H^s_0(\Omega)^n
\]
for some $K' \in \mathbb{N}$ and some $s \geq 0$. Then $\varphi \in H^s_0(\Omega)^n$ and
\[
\|\varphi\|_{H^s_0(\Omega)^n} \leq c(K, K', s, \Omega) \left(\|D^K \varphi\|_{H^s_0(\Omega)^n} + \|\varphi\|_{H^s_0(\Omega)^n}\right) \tag{5.11}
\]
with $c(K, K', s, \Omega) > 0$ not depending on φ.

31
Proof of Theorem 5.2: Denote by \(u \) the solution of (1.11) given by (3.3). From (5.7) and Theorem 3.1, one obtains that \(\mathcal{D}^{K'-j} \frac{\partial u}{\partial x_j} \in C([0, \infty), L^2(\Omega)^n), j \leq K' \). Application of Lemma 5.3 (with \(s = 0 \)) and Sobolev’s imbedding theorem yields \(u \in C^2([0, \infty) \times \bar{\Omega}) \). By definition of \(\mathcal{A} \) (see (4.1)), \(u \) solves (1.2). Uniqueness of the solution of (1.2) satisfying (5.8) follows from the uniqueness of the solution of (1.11) asserted by Theorem 3.1.

Suppose that all assumptions of Part 2 are satisfied and that \(s' > N_p + \frac{1}{2} \). Note that \(\omega^2 = \sigma_p > 0 \) by (4.5) and (2.3). According to (5.5) and Corollary 3.3, there exist constants \(N \in \mathbb{N}, \alpha_1, \ldots, \alpha_N \in [0, 1), \alpha_1 < \ldots < \alpha_N \) and operators \(Q_0, \ldots, Q_N \), such that

\[
\left\| \mathcal{D}^j u(t) - e^{-i\omega t} \omega^2 j \left(\sum_{k=1}^{N} i^{\alpha_k} Q_k(f) + \ln t \cdot Q_0(f) \right) - e^{-i\omega t} u_0^{(j)} \right\|_{0,-s'} \rightarrow 0
\]

as \(t \rightarrow \infty \) \((j = 0, 1, \ldots, K') \). Set

\[
v(t) := t^{-\alpha_N} e^{i\omega t} u(t) \quad \text{for } t \geq 0.
\]

Then \(v(t), \mathcal{D}v(t), \ldots, \mathcal{D}^{K'} v(t) \) converge as \(t \rightarrow \infty \) with respect to \(\| \cdot \|_{0,-s'} \). Furthermore \(v(t), \mathcal{D}v(t), \ldots, \mathcal{D}^{K'-1} v(t) \in \tilde{H}^1_{-s'}(\Omega)^n \) for every \(t \geq 0 \) (since \(v(t) \in D(\mathcal{A}^{K'}) \)). Application of Lemma 5.3 yields

\[
\|v(t) - v(t')\|_{\min(K,2K'),-s'} \rightarrow 0 \quad \text{as } t, t' \rightarrow \infty.
\]

This implies that \(Q_N(f) = \lim_{t \rightarrow \infty} v(t) \in H^1_{-s'}(\Omega)^n, \mathcal{D}^j Q_N(f) = \omega^2 j Q_N(f) \) \((j = 1, \ldots, k) \) and \(\mathcal{D}^j Q_N(f) \in \tilde{H}^1_{-s'}(\Omega)^n \) for \(j = 0, 1, \ldots, k-1 \). Repeat the same argument with \(v(t) := t^{-\alpha_{N-1}} e^{i\omega t} (u(t) - t^{\alpha_N} Q_N(f)) \) and so on. This proves that

\[
\|v(t)\|_{\min(K,2K'),-s'} \rightarrow 0 \quad \text{as } t \rightarrow \infty.
\]
Now use Sobolev’s inequality to obtain
\[
\left| \frac{r(t,x)}{(1+|x|^2)^{s/2}} \right| \leq c_1 \left\| \frac{r(t)}{(1+|x|^2)^{s/2}} \right\|_{\min(K,2K')}^{0,0} \\
\leq c_2 \|r(t)\|_{\min(K,2K'),-s'} \\
\to 0 \quad \text{as } t \to \infty
\]
uniformly with respect to \(x \in \Omega \). Thus (5.10) is proved in the resonance case. Finally note that \(u_\omega^{(0)} \in H^{\min(K,2K')}_{-s'} \subset C^2(\Omega) \) and
\[
\langle (\mathcal{D} - \omega^2)u_\omega^{(0)}, \varphi \rangle = \langle u_\omega^{(0)}, (\mathcal{D} - \omega^2)\varphi \rangle \\
= \lim_{t \to \infty} \left\langle e^{i\mathcal{D}t} u(t) - \sum_{k=1}^{N} e^{i\mathcal{D}t} Q_k(f) - \ln t \cdot Q_0(f), (\mathcal{D} - \omega^2)\varphi \right\rangle \\
= \lim_{t \to \infty} \langle (\mathcal{D} - \omega^2)e^{i\mathcal{D}t} u(t), \varphi \rangle \\
= \langle f, \varphi \rangle
\]
for every \(\varphi \in C^\infty_0(\Omega)^n \), since \((\mathcal{D} - \omega^2)Q_k(f) = 0 \) and
\[
\left\| e^{i\mathcal{D}t} (\mathcal{D} - \omega^2)u(t) - f \right\|_{0,-s'} = \left\| e^{i\mathcal{D}t} (A - \omega^2)u(t) - f \right\|_{0,-s'} \to 0 \quad \text{as } t \to \infty,
\]
which follows by the same arguments used in the proof of Theorem 3.2. This shows that \(u_\omega = u_\omega^{(0)} \) solves (1.6). Part 1 of the theorem is proved in the same way. \(\square \)

References

