Resonance Phenomena for a Class of Partial Differential Equations of Higher Order in Cylindrical Waveguides

P. Lesky jun., Stuttgart

Abstract.

We consider a domain Ω in \mathbb{R}^n of the form $\Omega = \mathbb{R}^l \times \Omega'$ with bounded $\Omega' \subset \mathbb{R}^{m-l}$. In Ω we study the Dirichlet initial and boundary value problem for the equation $\partial_t^2 u + [(-\partial_1 - \cdots - \partial_l)^m + (-\partial_{l+1} - \cdots - \partial_n)^m] u = f e^{-i\omega t}$.

We show that resonances can occur if $2m \geq l$. In particular, the amplitude of u may increase like t^α (α rational, $0 < \alpha < 1$) or like $\ln t$ as $t \to \infty$. Furthermore, we prove that the limiting amplitude principle holds in the remaining cases.

AMS subject classification: 35 B 40, 35 C 10, 35 E 99

Published in: Math. Meth. in the Appl. Sci. 11 (1989), 697-723