Open Positions



Workshops / Events

PhD graduates






Departments of Mathematics:

University of Stuttgart

University of Tübingen


zur Startseite



  • Cornean H.D., Monaco D., Teufel S.: Wannier functions and Z2 invariants in time-reversal symmetric topological insulators, Reviews in Mathematical Physics, Vol. 29, No. 2 (2017)
    1730001 (66 pages), DOI: 10.1142/S0129055X17300011
  • Kovarik H. , Ruszkowski B., Weidl T. : 'Spectral estimates for the Heisenberg Laplacian on cylinders''. in Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.), 433-446, 2017


  • Cornean H. .D.; Monaco D.; Teufel S.: Wannier functions and Z_2 invariants in time-reversal symmetric topological insulators. arXiv:1603.06752 (2016)
  • Gilg S., Pelinovsky D.,Schneider G.: Validity of the NLS approximation for periodic quantum graphs, NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 6, Art. 63, 30 pp.
  • Bach V.; Ballesteros, M.; Könenberg, M.; Menrath L.: Existence of Ground State Eigenvalues for the Spin-Boson Model with Critical Infrared Divergence and Multiscale Analysis. arxiv.org/pdf/1605.08348v1
  • Merkli, M.; Berman, G. P.; Sayre, R. T.; Gnanakaran, S.; Könenberg, M.; Nesterov, A. I.; Song, H.;
    Dynamics of a chlorophyll dimer in collective and local thermal environments. J. Math. Chem. 54 (2016), no. 4 , 866–9 17.
  • Monaco, D.;  Panati, G.; Pisante,A.; Teufel, S.: Optimal decay of Wannier functions in Chern and Quantum Hall insulators. Submitted to Communications in Mathematical Physics (Preprint arXiv:1612.09552)
  • Monaco, D.; Panati,G.; Pisante, A.; Teufel, S.: The Localization Dichotomy for gapped periodic quantum systems. Submitted to Physical Review Letters (Preprint at arXiv:1612.09557)
  • Könenberg M. , Merkli M.: On the irreversible dynamics emerging from quantum resonances. J. Math. Phys. 57, 033302 (2016)
  • Monaco D., Tauber C.; Gauge-theoretic invariants for topological insulators: A bridge between Berry, Wess-Zumino, and Fu-Kane-Mele.arxiv.org/abs/1611.05691 (2016)
  • Pelinovsky D., Schneider G.: Bifurcations of standing localized waves on periodic graphs,Annales Henri Poincare, accepted 2016
  • Ruszkowski, B.:Hardy Inequalities for the Heisenberg Laplacian on convex bounded polytopes, arxiv.org/abs/1606.04252v1


  • Bräunlich G., Hainzl C., Seiringer R.: Bogolubov-Hartree-Fock theory for strongly interacting fermions in the low density limit, arXiv:1511.08047
  • Brumm, B.; Kieri, E.:  A matrix-free Legendre spectral method for initial-boundary value problems, Electron. Trans. Numer. Anal. 45 (2016), 283–304
  • Bruun G.M., Hainzl C., Laux M.: Mixed parity pairing in a dipolar gas, arXiv:1512.01849
  • Deuchert, A.; Hainzl, Chr.;Seiringer, R.:Note on a family of monotone quantum relative entropies; Lett Math Phys (2015) 105:1449–1466.
  • Engelmann, M.:Rasmussen M.G.: Spectral deformation for two-body dispersive systems with e.g. the Yukawa potential; Math. Phys. Anal. Geom. 19 (2016), no. 4, 19:24)
  • Engelmann, M.; Møller J.S., Rasmussen M.G..: Local Spectral Deformation,  arXiv.1508.03474 (2015)
  • Frank R.L., Hainzl Chr., Schlein B., Seiringer R.: Incompatibility of time-dependent Bogoliubov--de-Gennes and Ginzburg--Landau equations, arXiv:1504.05885
  • Griesemer, M.; Wünsch, A.:Self-Adjointness and Domain of the Fröhlich Hamiltonian,  J. Math. Phys., 57(2):021902, 15, 2016.
  • Hainzl C., Seiringer R.: The BCS functional of superconductivity and its mathematical properties arXiv:1511.01995
  • Hainzl C., Seyrich J.: Comparing the full time-dependent BCS equation to its linear approximation: A numerical investigation, Eur. Phys. J. B 89 (5), 1–10 (2016)
  • von Keler, J.;Teufel, S.: The NLS limit for bosons in a quantum waveguide; Ann. Henri Poincaré
    17 (2016), no. 12, 3321–3360. doi:10.1007/s00023-016-0487-4
  • Kieri, E.; Lubich, Chr.; Walach, H.: Discretized dynamical low-rank approximation in the presence of small singular values, April 2015, SIAM J. Numer. Anal. 54 (2016), 1020–1038
  • Lubich, Chr.: Time Integration in the Multiconfiguration Time-Dependent Hartree Method of Molecular Quantum Dynamics, Appl. Math. Res. Express, doi:10.1093/amrx/abv006 (2015)
  • Lubich, Chr.; Oseledets, I.; Vandereycken, B.; Time integration of tensor trains, SIAM J. Numer. Anal. 53 (2015), 917-941.
  • Schmid,J., Griesemer, M.:Well-posedness of non-autonomous linear evolution equations in uniformly convex spaces, Math. Nachr. 290, 435–441 (2016)


  • Anapolitanos, I.: Remainder estimates for the Long Range Behavior of van der Waals force. arXiv:1308.4808
  • Bräunlich, G., Hainzl C., Seiringer R.: On the BCS gap equation for superfluid fermionic gases. Mathematical results in quantum mechanics, 127–137, World Sci. Publ., Hackensack, NJ, 2015. 81Q10 (76A25)
  • Brumm, B.: A fast matrix-free algorithm for spectral approximations to the Schrödinger equation. SIAM J. Sci. Comput., 37:A2003–A2025, 2015
  • Chirilus-Bruckner, M., Düll, W.-P., Schneider, G.: Validity of the KdV equation for the modulation of periodic traveling waves in the NLS equation. J. Math. Anal. Appl., 414(1): 166-175, 2014.
  • Esteban, M.: Functional Inequalities and Symmetry Properties of Extremal Functions IZKT Materialien No.15, ISBN 978-3-9814665-5-3
  • Faou, E.; Gauckler, L.; Lubich, Chr.: Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation, Forum Math. Sigma 2, Article ID e5, 45 p. (2014).
  • Frank R. L., Hainzl Chr., Seiringer R., Solovej J.P.: The external field dependence of the BCS critical temperature, arXiv:1410.2352
  • Gaim, W., Lasser, C.: Corrections to Wigner type phase space methods, Nonlinearity 27 (2014), 2951-2974
  • Gat O., Lein M., Teufel S.: Semiclassics for particles with spin via a Wigner-Weyl-type calculus. Annales Henri Poincare Online First (2014).
  • Griesemer M., Schmid J,: Kato's Theorem on the Integration of Non-Autonomous Linear Evolution Equations. Math. Phys. Anal. Geom. 17 (2014), no. 3-4, 17:9154.
  • Haag, S., Lampart, J., Teufel S.: Generalised Quantum Waveguides. Annales Henri Poincare 16, 2535-2568 (2015)
  • Hairer, E.; Lubich, Chr.: Energy-diminishing integration of gradient systems, IMA J. Numer. Anal. 34 (2014), 452-461.
  • Kovarik H., Weidl T.: Improved Berezin-Li-Yau inequalities with magnetic fields. to appear in The Royal Society of Edinburgh Proceedings A (2014).
  • Lampart, J., Teufel, S.:The adiabatic limit of Schrödinger operators on fibre bundles. arXiv:1402.0382
  • Lubich Chr.: Low-rank dynamics. Preprint, Januar 2014.
  • Lubich, Chr.; Oseledets,I.: A projector-splitting integrator for dynamical low-rank approximation, BIT 54 (2014),171-188 (2014)
  • Schmid, J: Well-posedness of non-autonomous linear evolution equations for generators whose commutators are scalar, Evol. Equ.(2015), DOI 10.1007/s00028-015-0291-5 .


  • Chen T.,  Hainzl Chr., Pavlovic N., Seiringer R.: On the well-posedness and scattering for the Gross-Pitaevskii hierarchy via quantum de Finetti, Lett. Math. Phys. 104 (2014), no. 7, 871–891. (Reviewer: Tohru Ozawa) 35Q55 (35B30 35P25 81V70)
  • Chong Ch.,  Schneider, G.: Numerical evidence for the validity of the NLS approximation in systems with a quasilinear quadratic nonlinearity. ZAMM 93: 688-696, 2013.
  • Faou E., Gauckler L., Lubich Chr.: Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus. Comm. Partial Differential Equations 38 (2013), 1123-1140.
  • Freund S., Teufel S.: Peierls substitution for magnetic Bloch bands. arXive 1312.5931 (2013)
  • Lubich Chr., Rohwedder T., Schneider R., Vandereycken B.: Dynamical approximation by hierarchical Tucker and
    tensor-train tensors. SIAM J. Matrix Anal. Appl. 34 (2013), 470-494.
  • Pelinovsky, D., Schneider, G.: Rigorous justification of the short-pulse equation. Nonlinear Differential Equations and Applications NoDEA 20: 1277-1294, 2013.
  • Schmid, J.:Adiabatic theorems with and without spectral gap condition for non-semisimple spectral values,
    arXiv:1401.0089 (2013)
  • Schneider, G., Zimmermann, D.: Justification of the Ginzburg-Landau approximation for an instability as it appears for Marangoni convection. Mathematical Methods in the Applied Sciences 36(9): 1003-1013, 2013.
  • Schulz-Baldes H., Teufel S.: Orbital polarization and magnetization for independent particles in disordered media. Commun. Math. Phys. 319 (2013), 649–681.
  • Stiepan H., Teufel S.: Semiclassical approximations for Hamiltonians with operator-valued symbols. Commun. Math. Phys. 320 (2013), 821-849
  • Wachsmuth J., Teufel S.: Effective Hamiltonians for constraint quantum systems. Memoirs of the AMS 1083 (2013)