Abstract: We study the linear dynamics of spectrally stable T-periodic stationary solutions of the Lugiato-Lefever equation (LLE), a damped nonlinear Schrödinger equation with forcing that arises in non-linear optics. It is known that such T-periodic solutions are nonlinearly stable to NT-periodic, i.e. subharmonic, perturbations for each $N \in \mathbb{N}$ with exponential decay rates of the form $e^{-\delta_N t}$. However, both the exponential rates of decay δ_N and the allowable size of initial perturbations tend to 0 as $N \to \infty$ so that this result is non-uniform in N and is, in fact, empty in the limit $N = \infty$. The primary goal of this talk is to introduce a methodology, in the context of the LLE, by which a uniform stability result for subharmonic perturbations may be achieved, at least at the linear level.