Blatt 8 Funktionalanalysis

1.12.2014

Aufgabe 31.

Zeigen Sie: Sei $\Omega \subseteq \mathbb{R}^n$ offen, $m \in \mathbb{N}_0$ und $1 \subseteq p < \infty$. Dann ist $W^{m,p}(\Omega) \cap C^{\infty}(\Omega)$ dicht in $W^{m,p}(\Omega)$.

Hinweis: Sie dürfen in Ihrem Beweis die Existenz einer Partition der Eins von Ω , die Existenz von Standard-Dirac-Folgen sowie die Differentiationsregel für Faltungen ohne Beweis verwenden. Wer diese drei Resultate nicht kennt, findet sie in Alt, Funktionalanalysis, Kapitel 2, erklärt.

Aufgabe 32.

Zeigen Sie: Für alle $u \in H^1(\mathbb{R}) \cap C^1(\mathbb{R})$ gilt

- a) $||u||_{C^0} \leq 2||u||_{L^2}||\partial_x u||_{L^2}$,
- **b)** $[u]_{C^{0,\frac{1}{2}}} \leq ||\partial_x u||_{L^2}.$

Aufgabe 33.

Zeigen Sie:

a) Der Integraloperator T aus Aufgabe 16 ist ein kompakter Operator.

Hinweis: Verwenden Sie den Satz von Arzelà-Ascoli.

b) Der Folgenoperator T aus Beispiel 15 c) des Vorlesungsskripts ist genau dann ein kompakter Operator wenn $\lim_{n\to\infty} a_n = 0$ gilt.

Hinweis: Verwenden Sie Lemma 2.3.4 des Vorlesungsskripts (das Lemma entspricht Alt, Lemma 8.2 (4)).

Aufgabe 34.

Beweisen Sie mit Hilfe der Definitionen von beschränkten und von kompakten linearen Abbildungen ohne Verwendung von Satz 2.3.7 des Vorlesungsskripts die folgende Aussage:

Sei X ein Banachraum, T eine kompakte lineare Abbildung auf X und Id - T injektiv. Dann ist $(Id - T)^{-1}$ eine stetige lineare Abbildung auf X.