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1. Introduction

• Many mathematical models for hydrodynamic problems or for pattern forming systems
are so complicated that a qualitative understanding of the full models does not seem
within reach for the near future.

• Goal: Approximation of such models in various parameter regimes by appropriate re-
duced models whose qualitative properties are more easily accessible and mathematically
rigorous justifications of these approximations.

• We will present as a typical example the approximation of the two-dimensional water wave
equations by the Korteweg-de Vries equation and the Nonlinear Schrödinger equation and
discuss its rigorous justification by estimates of the approximation errors in the typical
length and time scales.



2. The Two-dimensional Water Wave Problem

• First, we formulate the 2-d water wave problem in Eulerian coordinates:
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• Law of motion for the velocity field V = (u1,u2) of an incompressible, inviscid fluid in
an infinitely long canal of finite depth under the influence of gravity:

Vt +(V ·∇)V = −∇p−





0

1



 in Ω(t), (1)

∇ ·V = 0 in Ω(t) (2)

(incompressible Euler equations)



• Boundary conditions:

1. Particles on the free top surface Γ(t) = η(x1, t) remain surface particles:

η t = V ·
(−ηx1

1

)

at Γ(t), (3)

2. Laplace–Young condition for the pressure p:

p = −bκ at Γ(t), (4)

b : Bond number (proportional to the strength of the surface tension),
κ : curvature,

3. Impermeable bottom B:

u2 = 0 at B. (5)



• From now on we additionally assume

∇×V = 0 in Ω(t). (6)

• Then there exists a harmonic velocity potential φ and an operator K = K (η) s.t.

V = ∇φ and φy = K φx, (7)

where x = x1, y = x2.

• Using (7), the system (1)–(6) can be reduced to

ηt = K u1−u1ηx at Γ(t), (8)

(u1)t = −ηx− 1
2
((u1)

2+(K u1)
2)x+b

(

ηx√
1+η2

x

)

xx
at Γ(t). (9)

(Zakharov)



• Alternative formulations of the 2-d water wave model:

1. Using Lagrangian coordinates:

Γ(t) = {(X̃1(α , t), X̃2(α , t)) = (α +X1(α , t), X2(α , t)) |α ∈ R} . (10)

2. Arc length formulation:

– Parametrization of the free surface Γ(t) by arc length,

– Decomposition of the velocity field on Γ(t) in its tangential and its
normal component,

– Analyzing the evolution of the tangent angles on Γ(t) instead of the evolution
of the tangent slopes on Γ(t).

3. Using conformal coordinates.

4. Coordinate independent formulation using abstract differential geometric concepts.



• There are several proofs of local existence and uniqueness of solutions to the water wave
equations:

– in Lagrangian coordinates (e.g. Yosihara, Craig, Wu, Schneider–Wayne),

– in Eulerian coordinates (e.g. Iguchi, Lannes),

– in the arc length formulation (Ambrose–Masmoudi),

– in the coordinate independent formulation (Shatah–Zeng),

– in conformal coordinates (Hunter–Ifrim–Tartaru).

• Global or almost global existence results for sufficiently small initial data are only known
in the case of infinite depth of water:

– for the 2-d water wave equations (Wu, Alazard–Delort, Ionescu–Pusateri, Hunter–
Ifrim–Tartaru),

– for the 3-d water wave equations (Germain–Masmoudi–Shatah, Wu).



Typical profiles of water waves:



• Different profiles in different parameter regimes (Le Méhauté, 1976)



3. The Korteweg-de Vries Approximation

• We consider small and slow modulations of the trivial solution η = u1 = 0.

• Inserting the long–wave ansatz

( η

u1

)

(x, t) = ε2A
(

ε(x± t),ε3t
)

( 1

∓1

)

+O(ε3) (ε ≪ 1)

in (8)–(9) yields at leading order in ε the KdV equation

Aτ = ±
(

1
6
− b

2

)

Aξ ξ ξ ± 3
2
AAξ (11)

with τ = ε3t,ξ = ε(x± t).

• For b = 1
3
+2νε2 one gets, by making the ansatz

( η

u1

)

(x, t) = ε4A
(

ε(x± t),ε5t
)

( 1

∓1

)

+O(ε5)

the Kawahara equation

∂τA = ∓ν∂ 3
ξ A± 1

90
∂ 5

ξ A± 3
2
A∂ξ A (12)

with τ = ε5t,ξ = ε(x± t).



• Consequently, the soliton dynamics of the KdV equation and the dynamics of the Kawa-
hara equation are at least approximately present in the 2-d water wave problem.

• Solitons were first observed experimentally by John Scott Russell in 1834
(J. S. Russell: Report on waves. Rep. 14th Meet. Brit. Assoc. Adv. Sci., York, London,
John Murray, (1844), 311–390).



• Consequence of solitary waves: speed limits for high speed ferries



• Rigorous justification of the KdV and the Kawahara approximation by proving that the
relative error of the approximation is small on the characteristic time scale of the ap-
proximation equation.

• Previous approximation proofs on the right time scales:
Craig (1985), Schneider–Wayne (2000, 2002) : using Lagrangian coordinates
Bona–Colin–Lannes (2005), Iguchi (2007): using Eulerian coordinates

• We present an alternative approximation proof using the arc length formulation of the
water wave problem:

W.-P. D. Validity of the Korteweg-de Vries Approximation for the Two-Dimensional Water Wave Problem

in the Arc Length Formulation. Comm. Pure Appl. Math. 65 (2012), no. 3, 381-429.

• We prove the following theorems:



Theorem 1:

For all b0,C0,τ0 > 0 there exist an ε0 > 0 such that for all ε ∈ R with 0 < ε ≤ ε0 and all
b ∈ R\{1

3
} with 0 ≤ b ≤ b0 the following is true. Let

η |t=0(x) = ε2Φ1(εx), v1|t=0(x) = ε2Φ2(εx)

with max{‖(Φ1(·),Φ2(·))‖Hs+8
ξ

,‖(ρkΦ1(·),ρkΦ2(·))‖Hs+3
ξ

} ≤C0ε l, where ξ = εx, s ≥ 7,

k > 1, l ≥ 0 and ρ(ξ ) = (1+ξ 2)1/2. Let

(A1)τ =
(

b
2
− 1

6

)

(A1)ξ ξ ξ − 3
2
A1(A1)ξ , (A2)τ =

(

1
6
− b

2

)

(A2)ξ ξ ξ +
3
2
A2(A2)ξ ,

A1|τ=0 =
1
2
(Φ1+Φ2), A2|τ=0 =

1
2
(Φ1−Φ2).

Then there is a unique solution of (8)–(9) with the above initial conditions satisfying

sup
t∈[0,τ0/ε3]

∥

∥

∥

∥

∥

∥





η

v1



(·, t)−ψ(·, t)

∥

∥

∥

∥

∥

∥

Hs
ξ
×H

s−1/2

ξ

. ε4+l

where

ψ(x, t) = ε2A1

(

ε(x− t),ε3t
)





1

1



+ ε2A2

(

ε(x+ t),ε3t
)





1

−1



 .



Theorem 2:

Let b= 1
3
+2νε2. For all τ0 > 0 there exist an ε0 > 0 such that for all ε ∈R with 0< ε ≤ ε0

the following is true. Let

η |t=0(x) = ε4Φ1(εx), u1|t=0(x) = ε4Φ2(εx)

with ‖(Φ1,Φ2)‖Hs+10
ξ

∩Hs+3
ξ

(k) . ε l, where ξ = εx, s ≥ 7, k > 1 and l ≥ 0. Let

(A1)τ = ν∂ 3
ξ A1− 1

90
∂ 5

ξ A1− 3
2
A1∂ξ A1, (A2)τ =−ν∂ 3

ξ A2+
1

90
∂ 5

ξ A2+
3
2
A2∂ξ A2,

A1|τ=0 =
1
2
(Φ1+Φ2), A2|τ=0 =

1
2
(Φ1−Φ2).

Let [0,τ1] be the existence interval of A1,A2 in Hs+10
ξ ∩Hs+3

ξ (k) and τ2 =min{τ0;τ1}. Then
there is a unique solution of (8)–(9) with the above initial conditions satisfying

sup
t∈[0,τ2/ε5]

∥

∥

∥

∥

∥

∥
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(·, t)−ψ(·, t)

∥

∥

∥

∥

∥

∥

Hs
ξ
×H

s−1/2

ξ

. ε6+l

where

ψ(x, t) = ε4A1

(

ε(x− t),ε5t
)





1

1



+ ε4A2

(

ε(x+ t),ε5t
)





1

−1



 .



• Main advantages of using the arc length formulation:

– Proof of the local–wellposedness (Ambrose–Masmoudi) is more elementary and less
complex than in Eulerian or in Lagrangian coordinates,

– Better regularity properties,

– Our error estimates for the KdV approximation are the only ones being uniform w.r.t.
the strength of the surface tension as b and ε go to 0,

– Therefore, the cases with and without surface tension can be handled together in one
approximation proof,

– Optimal powers of ε in our bounds for the error and its spatial derivatives,

– Arc length parametrization in the KdV– and the Kawahara–regime is close to Eulerian
coordinates,

– Therefore, transferring our error estimates into Eulerian coordinates does not weaken
the estimates,

– More accessible to generalizations, e.g., including vorticity (in preparation).



4. The 2-d Water Wave Equations and the KdV Approximation

in the Arc Length Formulation

• Let P(t) : R→ Γ(t), α 7→ P(α , t) = (x(α , t),y(α , t)) be a parametrization of the top
surface by arc length.

• Then we have:

(x,y)t =Un̂+Tt̂, (13)

where U and T are the normal and the tangential velocity of Γ w.r.t. P.

• T is determined (up to a constant) by the arc length condition, which yields

T =
∫

θαU , (14)

where θ = arctan(yα/xα) is the tangent angle.

• The irrotationality of the flow and the Neumann boundary condition (5) imply that for
known Γ(t) the normal velocity U(t) is uniquely determined by the Lagrangian tangential
velocity v(t) via the so–called Birkhoff–Rott integral W .



• The Birkhoff–Rott integral W : (γ,σ) 7→W (γ,σ) =W1(γ)+W2(σ) is defined by

(ReW1(γ)− i ImW1(γ))(α , t) =
1

2π i
PV

∫ ∞

−∞

γ(α ′, t)

z(α , t)− z(α ′, t)
dα ′ , (15)

(ReW2(σ)− i ImW2(σ))(α , t) =
1

2π

∫ ∞

−∞

σ(α ′, t)

z(α , t)− zB(α ′)
dα ′ , (16)

where z and zB are complex representations of arc length parametrizations of the top
surface and the bottom. γ is the so–called vortex sheet strength and σ is the so–called
source strength.

• σ is uniquely determined by γ via

σ(α ′, t) =
1

π
Re

∫ ∞

−∞

γ(α ′′, t)

z(α , t)− zB(α ′)
dα ′′ . (17)

• γ is uniquely determined by v via

1
2
γ +W (γ) · t̂ = v . (18)

• Finally, we have

U =W · n̂ . (19)



• v is governed by the incompressible Euler equations (1)–(2) and the boundary conditions
(4)–(5). This yields

vt =−yα +bθαα − (v−T )(v−T )α +(W · n̂)θt . (20)

• Finally, the 2-d water wave equations are equivalent to the following evolutionary system:

yt = (W · n̂)cosθ +Tyα , (21)

vt = −yα +bθαα −δδα +(W · n̂)θt , (22)

θt = Wα · n̂+ γ
2
θα −δθα , (23)

δα t = −(1+ c)θα +bθααα − (δδα)α +
(

Wα · n̂+ γ
2
θα

)2
, (24)

where

δ = v−T , (25)

c =Wt · n̂+δ (Wα · n̂)+ γ
2
θt +

γ
2
δθα +(cosθ −1) . (26)

• We will use the equations for y and v to perform the approximation and the equations
for θ and δα to estimate the derivatives of the error.



• Now, we go to the KdV–scaling:

α = ε−1α , y(α , t) = ε2ỹ(α , t), v(α , t) = ε2ṽ(α , t)

and therefore

x(α , t) = α + ε5x̃(α, t), z(α , t) = α + ε2z̃(α , t), θ (α , t) = ε3θ̃(α , t),

γ(α , t) = ε2γ̃(α , t), W (α , t) = ε2W̃ (α , t), δ (α , t) = ε2δ̃ (α, t),

U(α , t) = ε2Ũ(α , t), T (α , t) = ε5T̃ (α, t).

• In this scaling the system becomes

ỹt = (W̃ · n̂)(1+(cos(ε3θ̃ )−1))+ ε6T̃ ỹα , (27)

ṽt = −ε ỹα + ε3bθ̃α α − ε3δ̃ δ̃α + ε3(W̃ · n̂)θ̃t , (28)

θ̃t = W̃α · n̂+ ε3 γ̃
2
θ̃α − ε3δ̃ θ̃α , (29)

δ̃α t = −ε(1+ ε2c̃)θ̃α + ε3bθ̃α α α − ε3(δ̃ δ̃α)α + ε3
(

W̃α · n̂+ ε3 γ̃
2
θ̃α

)2
, (30)

where

c̃ = W̃t · n̂+ ε3δ̃ (W̃α · n̂)+ ε3 γ̃
2
θ̃t + ε6 γ̃

2
δ̃ θ̃α +(cos(ε3θ̃)−1) , (31)

1
2
γ̃ +W̃ · t̂ = ṽ , (32)

δ̃ = ṽ− ε3T̃ . (33)



Theorem 3: (Theorem 1 in the arc length formulation)

For all b0,τ0 > 0 there exist an ε0 > 0 such that for all ε ∈ R with 0 < ε ≤ ε0 and all
b ∈ R\{1

3
} with 0 ≤ b ≤ b0 the following is true. Let

ỹ|t=0(α) = Φ̃1(α), ṽ|t=0(α) = Φ̃2(α)

with ‖(Φ̃1,Φ̃2)‖Hs+8
α ∩Hs+3

α (k) . ε l, where s ≥ 7, k > 1 and l ≥ 0. Let

(A1)τ =
(

b
2
− 1

6

)

(A1)α α α − 3
2
A1(A1)α, (A2)τ =

(

1
6
− b

2

)

(A2)α α α +
3
2
A2(A2)α,

A1|τ=0 =
1
2
(Φ̃1+ Φ̃2), A2|τ=0 =

1
2
(Φ̃1− Φ̃2).

Then there exists a unique solution of the 2-d water wave equations (27)–(30) with the
above initial conditions satisfying

sup
t∈[0,τ0/ε3]

∥

∥

∥

∥

∥

∥





ỹ

ṽ



(·, t)−ψ(·, t)

∥

∥

∥

∥

∥

∥

Hs
α×H

s−1/2
α

. ε2+l

where

ψ(α , t) = A1

(

α − εt,ε3t
)





1

1



+ ε2A2

(

α + εt,ε3t
)





1

−1



 .



5. Main Ideas of the Proof

• Step 1: Find explicit expressions for the linear and the quadratic terms of the system
(27)–(30) and bounds for the cubic and higher order terms.
Main tools: 1. Taylor expansions of the Birkhoff–Rott Integral and its derivatives.
2. Find the right balance between size and regularity.

• Step 2: Refind the KdV equation approximately in (27)–(30).

• Step 3: Write the exact solutions of (27)–(30) as approximation plus error and construct
a suitable nonlinear energy being equivalent to the square of a Sobolev–norm to estimate
the error on a timespan of order O(ε−3) w.r.t. t.

• Step 4: Express the proven result in Eulerian coordinates.

• Treat the Kawahara case analogously.



• To Step 1: We obtain

ỹt = K0(ṽ)+ ε3
(

K0[K0, ỹ]ṽ− (1+K2
0)(ỹṽ)

)

α
+h.o.t.,

ṽt = −ε ỹα + ε3b ỹα α α − ε3δ̃ ṽα + ε3K0(δ̃α)K0(ṽ)+h.o.t.,

θ̃t = K0(δ̃α)− ε3δ̃ θ̃α + ε3
(

K0[K0, ỹ]δ̃α − (1+K2
0)(ỹδ̃α)

)

α

+ε3
(

K0[K0, θ̃ ]δ̃α − (1+K2
0)(θ̃ δ̃α)

)

+h.o.t.,

δ̃α t = −ε
(

1− ε3K0(θ̃)+ ε5bK0(θ̃α α)+h.o.t.
)

θ̃α + ε3b θ̃α α α

−ε3(δ̃ δ̃α)α + ε3(K0(δ̃α))
2+h.o.t.,

δ̃ (α , t) = ṽ(α, t)− ε3

∫ α

−∞
(K0(ṽ)θ̃α)(β , t)dβ +h.o.t.,

where

K̂0(k) =−i tanh(εk) .



• To Step 3: Let

ỹ(α , t) = A1(α − εt,ε3t)+A2(α + εt,ε3t)+ ε2Rỹ(α , t) ,

ṽ(α , t) = A1(α − εt,ε3t)−A2(α + εt,ε3t)+ ε2Rṽ(α , t) ,

θ̃(α , t) = ∂αA1(α − εt,ε3t)+∂αA2(α + εt,ε3t)+ ε2Rθ̃(α , t) ,

δ̃α(α , t) = ∂αA1(α − εt,ε3t)−∂αA2(α + εt,ε3t)+ ε2Rδ̃α
(α , t) .

Then the error R = (Rỹ,Rṽ,Rθ̃ ,Rδ̃α
) satisfies

∂tRỹ = K0Rṽ+ ε3
N1 ,

∂tRṽ = −ε ∂αRỹ+ ε3b∂ 3
αRỹ+ ε3

N2 ,

∂tRθ̃ = K0Rδ̃α
− ε3δ̃ ∂αRθ̃ − ε3∂α(1+K2

0)(ỹRδ̃α
)+ ε3

N3 ,

∂tRδ̃α
= −ε(1+ ε3CR)∂αRθ + ε3b∂ 3

αRθ̃ − ε6b(∂α θ̃ )K0∂ 2
αRθ̃

−ε3δ̃ ∂αRδ̃α
+ ε3

N4 .



• We use the following energy:

E (t) = E(t)+Eb(t)+
s

∑
k=0

Ek(t)+
s

∑
k=0

Eb,k(t)

for s ≥ 6, where

E(t) =
1

2

∫

R

RỹK
−1
0 (−ε∂α)Rỹ dα +

1

2

∫

R

R2
ṽ dα ,

Eb(t) =
b

2
ε2

∫

R

(∂αRỹ)K
−1
0 (−ε∂α)(∂αRỹ) dα ,

Ek(t) =
1

2

∫

R

(1+ ε3CR)(∂
k
αRθ̃)K

−1
0 (−ε∂α)(∂

k
αRθ̃)dα +

1

2

∫

R

(∂ k
αRδ̃α

)2 dα

+
1

2
ε2

∫

R

(∂ k
αRδ̃α

)K−1
0 (−ε∂α)(1+K2

0)(ỹ∂ k
αRδ̃α

)dα ,

Eb,k(t) =
b

2
ε2

∫

R

(∂ k+1
α Rθ̃)

(

K−1
0 (−ε∂α) + ε4(∂α θ̃) + ε6(∂αRθ̃)

)

(∂ k+1
α Rθ̃)dα .



• We show:

d

dt
E . ε3(E +1)

uniformly w.r.t. all b ∈ R
+
0 \{1

3
} with b ≤ b0.

Main ingredients of the argumentation:

– The energy E is constructed in a such way that all terms in the error equations that
cannot be estimated directly cancel.

– Transport terms do not cause a loss of regularity.

– Use of commutator estimates.

• Now, an application of Gronwall’s inequality yields the boundedness of the error on the
right time scale.



6. The NLS Approximation

• Let b = 0. Inserting the ansatz

( η

u1

)

(x, t)= εΨNLS(x, t)= εA
(

ε(x− cgt),ε
2t
)

ei(k0x−ω(k0)t)ϕ(k0)+c.c. (ε ≪ 1)

with

ω(k) = sign(k)
√

k tanh(k), cg = ∂kω(k0), ϕ(k0) ∈ C
2

in the 2-d water wave equations (8)–(9) yields at leading order in ε the NLS equation

Aτ = iν1Aξ ξ + iν2A|A|2 (34)

with τ = ε2t,ξ = ε(x− cgt) and ν j = ν j(k0) ∈ R (Zakharov, 1968).

• The NLS equation describes the evolution of the envelope of an oscillating wave packet
with basic wave number k0.



• The approximation of solutions to the 2-d water wave equations with the help of the
NLS equation is also interesting in the context of modeling Monster Waves.

• Rigorous justification of the NLS approximation by proving that the relative error of the
approximation is small on the characteristic time scale of the approximation equation,
i.e., t = O(ε−2).



• Mathematical rigorous justifications of the NLS approximation in the right scales exist
in the case without surface tension
Totz-Wu: for infinite depth of water,
D.-Schneider-Wayne: for finite depth of water:

W.-P. D., G. Schneider, C. E. Wayne. Justification of the Nonlinear Schrödinger equation for the evolution

of gravity driven 2D surface water waves in a canal of finite depth. Arch. Rat. Mech. Anal. (2015),

http://dx.doi.org/10.1007/s00205-015-0937-z

• We prove the following theorem:



Theorem 4:

Let b = 0 and s ≥ 7. Then for all k0 > 0 and for all C1,τ0 > 0 there exist τ1 > 0 and ε0 > 0

such that for all solutions A ∈C([0,τ0],H
s(R,C)) of the NLS equation (34) with

sup
τ∈[0,τ0]

‖A(·,τ)‖Hs(R,C) ≤C1

the following holds. For all ε ∈ (0,ε0) there exists a solution

(η ,v1) ∈C([0,τ1/ε2],(Hs(R,R))2)

of the 2-D water wave problem (8)–(9) which satisfies

sup
t∈[0,τ1/ε2]

∥

∥

∥

∥

(

η

v1

)

(·, t)−ψ(·, t)
∥

∥

∥

∥

(Hs(R,R))2
. ε3/2

where
ψ(x, t) = εA

(

ε(x− cgt),ε
2t
)

ei(k0x−ω(k0)t)ϕ(k0)+ c.c. .



• A rigorous justification of the NLS approximation in the right scales in the case with
surface tension exists at the moment only for the Boussinesq equation

∂ 2
t u = ∂ 2

x u+∂ 2
x (u

2)+∂ 2
t ∂ 2

x u+µ∂ 6
x u ,

which is another reduced model equation for the 2-d water wave equations.

W.-P. D., G. Schneider. Justification of the nonlinear Schrödinger equation for a resonant Boussinesq

model. Indiana Univ. Math. J. 55 (2006), no. 6, 1813-1834.

• Moreover, we have rigorous justifications of the NLS approximation in the right scales
for the quasilinear wave equation

∂ 2
t u = ∂ 2

x u−u−u3−∂ 2
x (u

2) .

M. Chirilus-Bruckner, W.-P. D., G. Schneider. NLS approximation of time oscillatory long waves for

equations with quasilinear quadratic terms. Math. Nachr. 288 (2015), no. 2-3, 158-166.

and for the 2D fourth order nonlinear wave equation

∂ 2
t u = ∆u−u−∆2u+u2 .

W.-P. D., A. Hermann, G. Schneider, D. Zimmermann. Justification of the 2D NLS equation – Quadratic

resonances do not matter in case of analytic initial conditions. Submitted to J. Math. Anal. Appl., 2015.



• Very recently, we have rigorously justified the NLS approximation in the right scales for
the quasilinear dispersive equation

∂tu = K0u−∂x(u
2) .

W.-P. D., M. Heß. Validity of the Nonlinear Schrödinger approximation for a quasilinear dispersive equa-

tion. Preprint, Universität Stuttgart. In Preparation. 2015



• Slow modulations of non-decaying periodic traveling wave solutions to the 2-d water wave
equations can be formally approximated by Whitham’s equations (a nonlinear system of
hyperbolic conservation laws).

• The mathematical rigorous justification of the Whitham approximation is an open prob-
lem.

• A first step: Justification of the Whitham approximation for a spatially periodic Boussi-
nesq model.
R. Bauer, W.-P. D., G. Schneider. The KdV, the Burgers and the Whitham limit for a spatially periodic

Boussinesq model. Preprint, Universität Stuttgart, 2015.



7. Main Ideas of the Proof of Theorem 4

• Step 1: Using Lagrangian coordinates

Γ(t) = {X(α , t) = (X̃1(α , t), X̃2(α , t)) = (α +X1(α , t),X2(α , t) |α ∈ R} .

• In terms of the variables

W = (Z1 = K0X1, X2, U1 = ∂tX1),

where
ˆK0(k) =−i tanh(k),

the evolution equations are

∂tW =











K0U1

K0U1 +S1(X)U1

−(1−M2Z1+(∂αX2)K0+(∂αX2)S1(X))−1((∂αX2)(1+[∂t,S1(X)]U1))











,

where
S1(X) = K (X)−K0 , M2 =−∂α(K0)

−1 .



• Step 2: After diagonalizing the linear part of this system the equations are of the form

∂tc = Λc+N(c,c) , (35)

where
c = (c1,c2,c3)

T , Λ = i diag(ω1,ω2,ω3)

with

ω1(k) = 0 , ω2(k) =−ω(k) =−sign(k)
√

k tanh(k) , ω3(k) = ω(k) .

• Step 3: Writing the solution as approximation and error, i.e.,

c = εΨ+ ε3R ,

where Ψ− (0,ΨNLS,0)
T = O(ε) yields

∂tR = ΛR+2εN(Ψ,R)+ ε3N(R,R)+Res(Ψ) , (36)

where Res(Ψ) = O(ε2) for an appropriate construction of Ψ.



• Hence, the evolution system for R is of the form

∂tR = ΛR+ εB(Ψ,R)+O(ε2) , (37)

where

B̂ j(Ψ,R)(k) =
∫

∑
l,n=1,2,3

b̂ j,l,n(k,k− ℓ,ℓ)Ψ̂l(k− ℓ)R̂n(ℓ)dℓ , j = 1,2,3.

• Step 4: Since we cannot directly control εB(Ψ,R) over a time scale of order O(ε−2),
we want to eliminate this term with the help of a normal form transformation R 7→ R̃

with

R̃ = R+ εM(Ψ,R) , (38)

where

M̂ j(Ψ,R)(k) =
∫

∑
l,n=1,2,3

m̂ j,l,n(k,k− ℓ,ℓ)Ψ̂l(k− ℓ)R̂n(ℓ)dℓ , j = 1,2,3.

• Inserting (38) to (37) yields

m̂ j,l,n(k,k− ℓ,ℓ) =
i b̂ j,l,n(k,k− ℓ,ℓ)

−ω j(k)−ω(k− ℓ)+ωn(ℓ)
.



• Since Ψ̂NLS is concentrated around k =±k0 the kernels m̂ j,l,n can be simplified to

m̂ j,l,n(k) =
i b̂ j,l,n(k,±k0,k∓ k0)

−ω j(k)−ω(±k0)+ωn(k∓ k0)
.

• First difficulty: There are points where the denominator vanishes (resonances).

• The resonances are located at k = 0,±k0,±2k0.
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The curves k 7→ ω j(k) and the curves k 7→ ω3(k0)+ωm(k− k0) for j,m ∈ {1,2,3} and k0 = 2.

Intersection points correspond to resonances.



• For the resonances at k = 0 and k =±2k0 the numerators also vanish and the singularities
can be removed.

• For the resonances at k = ±k0 the singularities can be removed by rescaling R, i.e., by
replacing R by ϑR, where

ϑ̂ (k) =







1 for |k|> δ ,

ε +(1− ε)|k|/δ for |k| ≤ δ ,
δ ≪ 1.



• Second difficulty: Since b̂ j,l,n(k,±k0,k∓k0)∼ i sign(k)
√

|k| as |k| → ∞ for some b̂ j,l,n,
the normal form transform loses smoothness, i.e., we have

‖R̃‖Hs . ‖R‖Hs+1/2 .

• But, to obtain an evolution equation for R̃, we have to invert the normal form transform.

• Despite the loss of smoothness the normal form transform can be inverted, where

‖R‖Hs . ‖R̃‖Hs .

• The reason for that is the fact that the mapping R 7→ R̃ has similar structural properties
as the solution operator f 7→ u of the differential equation

u(x)+ εa(x)ux(x) = f (x) , a(x) ∈ R.



• Having made the normal form transform the error R̃ satisfies

∂tR̃ = ΛR̃+ ε2 f (R̃)+Res(Ψ) , (39)

where
‖ f (R̃)‖Hs . ‖R̃‖Hs+1 .

• Hence, we have no more O(ε)–terms but the RHS loses one derivative.

• Therefore, we will control the error R̃ in the following space of analytic functions:

Yσ ,s =

{

f ∈ L2(R) | ‖ f‖Yσ ,s =

(

∫

(1+ k2)se2σ |k|| f̂ (k)|2dk

)1/2

< ∞

}

.

This is possible because ΨNLS is compactly supported in Fourier space up to a small
error.



• Step 5: We introduce the new variables w, where

ˆ̃R(k, t) = ŵ(k, t)e−|k|(a−bε2t)

with an appropriate choice of a,b > 0.

• Then w satisfies
∂tw = Λw−|k|bε2w+ ...

• Therefore, we obtain
∂t‖w‖Hs . ε2(‖w‖Hs +1) .

• Applying Gronwall’s lemma, we get the boundedness of ‖w‖Hs and therefore the
boundedness of ‖R̃‖Yσ ,s on a timespan of order O(ε−2).

• Since the Yσ ,s-norm controls any Sobolev norm, we finally obtain the boundedness of the
error in Hs on a timespan of order O(ε−2), which proves our theorem.


