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1. Introduction

e Many mathematical models for hydrodynamic problems or for pattern forming systems
are so complicated that a qualitative understanding of the full models does not seem
within reach for the near future.

e Goal: Approximation of such models in various parameter regimes by appropriate re-
duced models whose qualitative properties are more easily accessible and mathematically
rigorous justifications of these approximations.

e \We will present as a typical example the approximation of the two-dimensional water wave
equations by the Korteweg-de Vries equation and the Nonlinear Schrodinger equation and
discuss its rigorous justification by estimates of the approximation errors in the typical
length and time scales.



2. The Two-dimensional Water Wave Problem

e First, we formulate the 2-d water wave problem in Eulerian coordinates:
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Xl u
Qt 2 111

e Law of motion for the velocity field V = (u;,us) of an incompressible, inviscid fluid in
an infinitely long canal of finite depth under the influence of gravity:

1 L

Vi+(V-V)V = —Vp— (1) in Q(7), (1)

V.V =0 in Q(r) (2)

(incompressible Euler equations)



e Boundary conditions:

1. Particles on the free top surface I'(t) = 1 (x;,¢) remain surface particles:

n o=V (_’17’“1) at T(7),

2. Laplace—Young condition for the pressure p:
p = —bx atI'(r),

b: Bond number (proportional to the strength of the surface tension),
K : curvature,

3. Impermeable bottom B:

l/t2:0 at B.



e From now on we additionally assume
VxV =0 in Q(z). (6)
e Then there exists a harmonic velocity potential ¢ and an operator # = JZ'(n) s.t.
V=V¢ and ¢, = H¢, (7)
where x = x1, y = x3.
e Using (7), the system (1)—(6) can be reduced to
N = A ur—uiy atI'(z), (8)

() = == 5(() + ()t (2 ) at T(1). (9)
(Zakharov)




e Alternative formulations of the 2-d water wave model:

1. Using Lagrangian coordinates:
L(t) ={Xi(a,1), Xa(a,1)) = (@ +Xi(a,1), Xo(@,1)) | €R}. (10)

2. Arc length formulation:
— Parametrization of the free surface I'(¢) by arc length,

— Decomposition of the velocity field on I'(¢) in its tangential and its
normal component,

— Analyzing the evolution of the tangent angles on I'(¢) instead of the evolution
of the tangent slopes on I'(7).

3. Using conformal coordinates.

4. Coordinate independent formulation using abstract differential geometric concepts.



e There are several proofs of local existence and uniqueness of solutions to the water wave
equations:

— in Lagrangian coordinates (e.g. Yosihara, Craig, Wu, Schneider-Wayne),
— in Eulerian coordinates (e.g. lguchi, Lannes),
— in the arc length formulation (Ambrose-Masmoudi),
— in the coordinate independent formulation (Shatah—Zeng),
— in conformal coordinates (Hunter—Ifrim—Tartaru).
e Global or almost global existence results for sufficiently small initial data are only known
in the case of infinite depth of water:

— for the 2-d water wave equations (Wu, Alazard—Delort, lonescu—Pusateri, Hunter—
Ifrim—Tartaru),

— for the 3-d water wave equations (Germain—Masmoudi-Shatah, Wu).



Typical profiles of water waves:

Stokes Waves

Cnoidal Waves




e Different profiles in different parameter regimes (Le Méhauté, 1976)
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3. The Korteweg-de Vries Approximation
e We consider small and slow modulations of the trivial solution n = u; = 0.

e Inserting the long—wave ansatz

(:1>(x,t)=£2A(8(xit),83t) (;1>+ﬁ(83) (e < 1)

in (8)—(9) yields at leading order in € the KdV equation
Ac = +(5—3)Azee T3AA; (11)
with 7= €%%,& = e(x*1).

e For b= %—I—ZVS2 one gets, by making the ansatz

1
(" ) (1) =€ (e(xr),%) () +0()
175 1
the Kawahara equation
IA = FVIIAT ggdiA+3A0LA (12)

with T =¢€%,& = e(x+£1).



e Consequently, the soliton dynamics of the KdV equation and the dynamics of the Kawa-
hara equation are at least approximately present in the 2-d water wave problem.

e Solitons were first observed experimentally by John Scott Russell in 1834
(J. S. Russell: Report on waves. Rep. 14th Meet. Brit. Assoc. Adv. Sci., York, London,
John Murray, (1844), 311-390).
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e Consequence of solitary waves: speed limits for high speed ferries

(a) HSC operating at sub-critical (b) HSC operating near super-critical
speed in the M arlborough Sounds speed in the M arlborough Sound



e Rigorous justification of the KdV and the Kawahara approximation by proving that the
relative error of the approximation is small on the characteristic time scale of the ap-
proximation equation.

e Previous approximation proofs on the right time scales:
Craig (1985), Schneider-Wayne (2000, 2002) : using Lagrangian coordinates
Bona—Colin—Lannes (2005), lguchi (2007): using Eulerian coordinates

e We present an alternative approximation proof using the arc length formulation of the
water wave problem:

W.-P. D. Validity of the Korteweg-de Vries Approximation for the Two-Dimensional Water Wave Problem
in the Arc Length Formulation. Comm. Pure Appl. Math. 65 (2012), no. 3, 381-429.

e We prove the following theorems:



Theorem 1:

For all by, Cp, Ty > O there exist an & > 0 such that for all € € R with 0 < € < g, and all
b€ R\ {3} with 0 < b < by the following is true. Let

n ‘[:()()C) = 82(131(8)6), Vl‘[:()(x) = 82CI)2(8)C)
with max {[| (@1 ("), Pa(-))l|zg+s. H(p"CI>1(-),p"<I>2(-))HHg+3} < Coe', where & = €x, 5>7,
k>1,1>0and p(&) = (14+E2)1/2 Let

(A)e=(5—¢)(ADeee —341(A1)e,  (A2)r = (5 —5) (Ar)eee +3A2(Ad)e,

Allrmo = 3(@1+D2),  Ap|emo = 5(P1 — D2).

Then there is a unique solution of (8)—(9) with the above initial conditions satisfying

sup \ ('7t)_llj('7t> §84+l
1€]0,79/€°] Vi Hé ng_l/z

where

1 1
y(x,1) =€’A; (e(x—1),€) 1 +&%A; (e(x+1),€) 1



Theorem 2:

Let b = %+2ve2. For all 75 > O there exist an & > 0 such that foralle e R with 0 < e < g,
the following is true. Let

n \,:o(x) = 84(131(8)6), 751 |t:0(x) = 84(132(8)6)

with ||(CI>1,d>2)\]Hé+1oﬂHg+3(k) <ég!, where E=¢x, s>7, k>1and[>0. Let
(Al)f = v8§A1 — %855141 — %A185A1, (AZ)T = —VagAz + 9—10855A2 + %A285A2,

Alle—o =3(@1+D2),  As|emo = 3(P1 —D2).

Let [0, 1] be the existence interval of A1, A; in Hgﬂo HH?F3 (k) and 7, =min{1y; 71 }. Then

there is a unique solution of (8)—(9) with the above initial conditions satisfying

sup 5 ('7t)_l/j(°7t) 586+l
1€[0,7p /€] Ui ngHg_l/z

h
where i i

y(x,t) = €A (e(x—1),€) 1 +e'Ay(e(x+1),€1) 1



e Main advantages of using the arc length formulation:

— Proof of the local-wellposedness (Ambrose-Masmoudi) is more elementary and less
complex than in Eulerian or in Lagrangian coordinates,

— Better regularity properties,

— Our error estimates for the KdV approximation are the only ones being uniform w.r.t.
the strength of the surface tension as b and € go to 0,

— Therefore, the cases with and without surface tension can be handled together in one
approximation proof,

— Optimal powers of € in our bounds for the error and its spatial derivatives,

— Arc length parametrization in the KdV— and the Kawahara—regime is close to Eulerian
coordinates,

— Therefore, transferring our error estimates into Eulerian coordinates does not weaken
the estimates,

— More accessible to generalizations, e.g., including vorticity (in preparation).



4. The 2-d Water Wave Equations and the KdV Approximation
in the Arc Length Formulation

o let P(t):R—TI(t), x — P(axt,t) = (x(cx,t),y(cx,t)) be a parametrization of the top
surface by arc length.
e Then we have:
(x,y), =UA+TT, (13)
where U and T are the normal and the tangential velocity of I" w.r.t. P.

e T is determined (up to a constant) by the arc length condition, which yields

_ / O, . (14)

where 6 = arctan(yy /x4 ) is the tangent angle.

e The irrotationality of the flow and the Neumann boundary condition (5) imply that for
known I'(¢) the normal velocity U () is uniquely determined by the Lagrangian tangential
velocity v(¢) via the so—called Birkhoff-Rott integral W.



e The Birkhoff-Rott integral W : (y,0) — W (7, o) vmwymw()smmmdw

(ReW, () — iTmW) (7))(a, 2mPv/mZ ) a/ . (15)
(ReWs(0) — iTmWa(G))(a,1) = zln / I t)("_‘zz 4 (16)

where 7 and zp are complex representations of arc length parametrizations of the top
surface and the bottom. 7Y is the so—called vortex sheet strength and o is the so—called
source strength.

e 0 is uniquely determined by ¥ via

/ o 1 ~ ’)/(OC”,Z‘) 1"
o(a,r) = %Re/wz(a’t)_@(a,) do". (17)

e 7 is uniquely determined by v via
v+ w(y)-i=v. (18)
e Finally, we have

U=W-A. (19)



e v is governed by the incompressible Euler equations (1)—(2) and the boundary conditions
(4)—(5). This yields

Vt:_)’a‘l‘beaa_(V_T)(V_T)a+(W'ﬁ)9t' (20)

e Finally, the 2-d water wave equations are equivalent to the following evolutionary system:

v = (W-i)cosO + Tyq, (21)

Vi = =Y+ b6ge— 00+ (W-1)6,, (22)

6, = Wo-i+16,—066,, (23)

Sar = —(1+¢)0a +bOuan — (68a)a+ (Wo-A+164)", (24)
where

§=v—T, (25)

c=W,-A+0(Wy-)+26,+2166,+ (cos® —1). (26)

e We will use the equations for y and v to perform the approximation and the equations
for @ and O, to estimate the derivatives of the error.



e Now, we go to the KdV—scaling:

a=¢"'a, yla,t)=c¢

and therefore
x(o,t) =0 +¢€
2

04
Yo, t) = eF(a,r), W(e,r)=eW(a), 6&(at)=ed(ar),

~

where



Theorem 3: (Theorem 1 in the arc length formulation)

For all by, 7o > O there exist an & > 0 such that for all € € R with 0 < & < & and all
b € R\ {3} with 0 < b < by the following is true. Let

Flizo(@) =®i(a),  Tli=o(@) = P2(a)
with ||(CI)1,CI)2)HH&+SQH&+3(]€) < ¢!, where s>7, k>1and[>0. Let

le

) (AZ)ococ(x + AZ(AZ)

O\I’—‘

(A1)r = (% - %) (Al)ggg - %AI(AI)@ (Az)r = (

Allrmo = 3(P1+D2),  Asfemo = 5(P1 — D»).

Then there exists a unique solution of the 2-d water wave equations (27)—(30) with the
above initial conditions satisfying

('7t)_llj('7t> SSZ_H
s—1/2

sup
t€[0,70/83]

Hy xHy
where

1 1
y(a,t) =A (o —et,€%) 1 + e’ A (o +et,€t) 1



5. Main ldeas of the Proof

e Step 1: Find explicit expressions for the linear and the quadratic terms of the system
(27)-(30) and bounds for the cubic and higher order terms.
Main tools: 1. Taylor expansions of the Birkhoff-Rott Integral and its derivatives.
2. Find the right balance between size and regularity.

e Step 2: Refind the KdV equation approximately in (27)—(30).

e Step 3: Write the exact solutions of (27)—(30) as approximation plus error and construct
a suitable nonlinear energy being equivalent to the square of a Sobolev—norm to estimate
the error on a timespan of order (£73) w.r.t. t.

e Step 4: Express the proven result in Eulerian coordinates.

e Treat the Kawahara case analogously.



e To Step 1: We obtain
i = Ko(7) + & (Ko[Ko, 517 — (1 +K3) (50)) , + hoo.t.,

~

—£%(00y) o+ £ (Ko(6g))* + h.o.t.,

S(ar) = #ot)— € / " (Ko(9)8a) (B.1)dB + ho.t..

—0Q

where

Ko(k) = —i tanh(&k) .



e To Step 3: Let

= Aj(a—et,et) +Ar(o+et,€t) + e°Ry(a,t),
= A(o—¢et,et) —Ay(a+et,et) +e°Ry(a,t),
= 0gA (a0 —€t,8t) + dpAs(a +£t,87t) + "R (aL,t)
= 0gA1(Q — €1,8t) — dgAr (e + €1, €71) + €7R; (0L,1).

Then the error R = (Ry, Ry, Rg, R ) satisfies

KoR; + 83c/V17

—€0gR;+ b IgR;+ € N5,

KoRs5 — €6 04Ry — €790 (1 4+ K;) (FR;, ) + € M5,
—&(14€°Cg) daRo + €’b O R; — €°b (04,0)Ko04R



e We use the following energy:
&(t) = E(t) + Eplt +2Ek )+ Y Epi(t)
—0

for s > 6, where

2/RK —€0y)Rydot + = /dea

E1) = 5" [ (2uRs)Ky | (~230) (9eRy) de,
R
1 1
Ei(t) = 5 /R (1+€°Cr)(IgR5)Ky ' (—€0x) (04R5) dt + 5 /R (JaRs,) da
/ (4R, Ky (—£da)(1 +K2) (FOLR;, ) dat,

Ep (1) /8k+1R6 (—£dg) + £(30) + £%(9uR5)) (35" R;) dat.



e We show:

d
—E£<e(&+1

uniformly w.r.t. all b € Ry \ {3} with b < by.

Main ingredients of the argumentation:
— The energy & is constructed in a such way that all terms in the error equations that
cannot be estimated directly cancel.

— Transport terms do not cause a loss of regularity.
— Use of commutator estimates.

e Now, an application of Gronwall’s inequality yields the boundedness of the error on the

right time scale.



6. The NLS Approximation

o Let b = 0. Inserting the ansatz

( 1 ) (x,1) = €Pnis(x,1) = €A (e(x —cyt), €1) e'thox=0ko)) i (ko) +c.c. (ex1)
Uy

with

w(k) =sign(k)y/k tanh(k), ¢, = dhw(ko), (ko) € C?
in the 2-d water wave equations (8)—(9) yields at leading order in € the NLS equation
A; = iViAge +iV,AJA]? (34)
with 7= ¢€%,& = e(x—c,t) and v; = v;(kg) € R (Zakharov, 1968).

e The NLS equation describes the evolution of the envelope of an oscillating wave packet
with basic wave number k.




e The approximation of solutions to the 2-d water wave equations with the help of the
NLS equation is also interesting in the context of modeling Monster Waves.

e Rigorous justification of the NLS approximation by proving that the relative error of the
approximation is small on the characteristic time scale of the approximation equation,

e, t=0(e?).



e Mathematical rigorous justifications of the NLS approximation in the right scales exist
in the case without surface tension

Totz-Wu: for infinite depth of water,
D.-Schneider-Wayne: for finite depth of water:

W.-P. D., G. Schneider, C. E. Wayne. Justification of the Nonlinear Schrodinger equation for the evolution
of gravity driven 2D surface water waves in a canal of finite depth. Arch. Rat. Mech. Anal. (2015),

http://dx.doi.org/10.1007 /s00205-015-0937-z

e \We prove the following theorem:



Theorem 4:

Let b=0and s > 7. Then for all k5 > 0 and for all C;, 79 > O there exist 71 > 0 and & >0
such that for all solutions A € C([0, 7], H*(R,C)) of the NLS equation (34) with

sup ||A(+, T)||msrc) < Ci

7€(0,79]
the following holds. For all € € (0, &) there exists a solution
(n,v1) € C([0,mi/€7], (H'(R,R))*)

of the 2-D water wave problem (8)—(9) which satisfies
n

( ) ('7t) o llj('at)
Vi

y(x,t) = A (e(x —cgt), %) o=k g (ko) + c.c.

5 83/2
(H5(R,R))>

sup
tE[O,Tl /82]

where



e A rigorous justification of the NLS approximation in the right scales in the case with
surface tension exists at the moment only for the Boussinesq equation

0*u = d*u+ 0*(u?) + 07 9*u+ udlu,
which is another reduced model equation for the 2-d water wave equations.

W.-P. D., G. Schneider. Justification of the nonlinear Schrédinger equation for a resonant Boussinesq

model. Indiana Univ. Math. J. 55 (2006), no. 6, 1813-1834.

e Moreover, we have rigorous justifications of the NLS approximation in the right scales
for the quasilinear wave equation

fu=0du—u—u —d>(u).

M. Chirilus-Bruckner, W.-P. D., G. Schneider. NLS approximation of time oscillatory long waves for
equations with quasilinear quadratic terms. Math. Nachr. 288 (2015), no. 2-3, 158-166.

and for the 2D fourth order nonlinear wave equation
Ofu=Au—u—ANu+u.

W.-P. D., A. Hermann, G. Schneider, D. Zimmermann. Justification of the 2D NLS equation — Quadratic
resonances do not matter in case of analytic initial conditions. Submitted to J. Math. Anal. Appl., 2015.



e Very recently, we have rigorously justified the NLS approximation in the right scales for
the quasilinear dispersive equation

O = Kou — dc(u?).

W.-P. D., M. HeB. Validity of the Nonlinear Schrédinger approximation for a quasilinear dispersive equa-
tion. Preprint, Universitat Stuttgart. In Preparation. 2015



e Slow modulations of non-decaying periodic traveling wave solutions to the 2-d water wave
equations can be formally approximated by Whitham's equations (a nonlinear system of
hyperbolic conservation laws).

e The mathematical rigorous justification of the Whitham approximation is an open prob-
lem.

e A first step: Justification of the Whitham approximation for a spatially periodic Boussi-
nesq model.
R. Bauer, W.-P. D., G. Schneider. The KdV, the Burgers and the Whitham limit for a spatially periodic
Boussinesq model. Preprint, Universitat Stuttgart, 2015.



7. Main ldeas of the Proof of Theorem 4

e Step 1: Using Lagrangian coordinates
C(t) ={X(ot,t) = (Xi(o,1),X5(0t,1)) = (ot + X1 (0, 1), X5(0t,t) | ot € R}
e In terms of the variables
W = (Z, = X1, Xo, Uy = d:Xy),

where

Jo(k) = —itanh(k),
the evolution equations are
( Uy \
oW = JoUr + A (X)U,
\ — (L= Zi + (doXo) Ko+ (duX2)- 7 (X)) ((9aXa) (14 [0}, A1 (X)]U1)) )

where

AX)=H(X)—Hy, Mr=—0u()".



e Step 2: After diagonalizing the linear part of this system the equations are of the form

dic = Ac+N(c,c),

where

C = (C17C2,03)T7 A:ldlag(wlaabvw?))

with

0 (k) =0, (k)= —w(k)= —sign(k)/k tanh(k),

e Step 3: Writing the solution as approximation and error, i.e.,
c=¢e¥V+¢e’R,
where ¥ — (0, Wy1s,0)" = O(€) yields
R = AR+2eN(¥,R)+&N(R,R) + Res(¥),

where Res(W¥) = €'(€?) for an appropriate construction of V.

(35)

(36)



e Hence, the evolution system for R is of the form
R = AR+ eB(¥,R) + O(&?), (37)
where

Bj(‘P,R)(k):/ Y bk k— 0% (k—OR(O)dl, j=1,2,3.

In=123

e Step 4: Since we cannot directly control €éB(W¥,R) over a time scale of order &'(g72),
we want to eliminate this term with the help of a normal form transformation R — R
with

R = R+eM(Y,R) , (38)
where

V(P R) (k) = / Y ijakk—00% (k- OR(OdL, j=1,2.3.

I.n=123
e Inserting (38) to (37) yields

ibja(k,k—1,0)

e G = EY )




e Since ‘iJNLS is concentrated around k = kg the kernels #1;;, can be simplified to

ibjn(k,xko, kT ko)
—;(k) — o (ko) + 0.(k F ko)

fjgn(k) =

e First difficulty: There are points where the denominator vanishes (resonances).

e The resonances are located at k = 0, £k, £2k.

5
a4l

3

1 =
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The curves k +— w;(k) and the curves k — @3(ko) + @, (k — ko) for j,m € {1,2,3} and ko = 2.

Intersection points correspond to resonances.



e For the resonances at k =0 and k = £2kj the numerators also vanish and the singularities
can be removed.

e For the resonances at k = +kj the singularities can be removed by rescaling R, i.e., by
replacing R by ¥R, where

A 1 for |k| >0,
B (k) = 0 < 1.
e+ (1—¢)lk|/o for |k| <9,



e Second difficulty: Since IA9j7l7n(k, +ko,kF ko) ~ isign(k)+/|k| as |k| — oo for some Zgj,l,n,

the normal form transform loses smoothness, i.e., we have
IRz S IR s -

e But, to obtain an evolution equation for R, we have to invert the normal form transform.

e Despite the loss of smoothness the normal form transform can be inverted, where

IR s S |IR]| s -

e The reason for that is the fact that the mapping R — R has similar structural properties
as the solution operator f — u of the differential equation

u(x)+ea(x)u(x) = f(x), alx)eR.



e Having made the normal form transform the error R satisfies
R = AR+ €*f(R) 4 Res(¥) , (39)

where
1F(R)||as S |IR st -

e Hence, we have no more &'(€)—terms but the RHS loses one derivative.

e Therefore, we will control the error R in the following space of analytic functions:

1/2
Yo 5= {f C L2(R) | Hf”yo,s = (/(1 ‘|‘k2)S€2"|k|\f(k)\2dk) < oo} ,

This is possible because Wy, g is compactly supported in Fourier space up to a small
error.



e Step 5: We introduce the new variables w, where
R(k,t) = w(k,t)e Hlla—be)
with an appropriate choice of a,b > 0.

e [hen w satisfies
ow = Aw — |k|be*w + ...

e [ herefore, we obtain
Ollwllas S e(||wllas+1) .

e Applying Gronwall’'s lemma, we get the boundedness of ||w||gs and therefore the
boundedness of ||R||y, on a timespan of order &'(g72).

e Since the Y5 c-norm controls any Sobolev norm, we finally obtain the boundedness of the
error in H* on a timespan of order &(¢72), which proves our theorem.



