5. Die Wasserwellengleichungen

Das 2-dimensionalen Wasserwellenmodell:
Betrachtet wird ein unendlich langer Kanal der Tiefe \(h \). Wir betrachten den Fall einer endlichen konstanten Tiefe. Durch Reskalierung können wir ohne \(h = 1 \) annehmen. Das Gebiet \(\Omega(t) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \in \mathbb{R}, -1 < x_2 < \eta(x_1, t) \} \) ist mit einer inkompressiblen, nicht viskosen Flüssigkeit gefüllt, auf die die Schwerekraft wirkt. Die Dichte der Flüssigkeit sei homogen, \(\rho \text{Scha} = 1 \). Die freie Oberfläche \(\Gamma(t) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \in \mathbb{R}, x_2 = \eta(x_1, t) \} \) ist eine Jordankurve, welche in \(x_2 \)-Richtung beschränkt ist und den Boden \(\mathcal{B} = \{(x_1, -1) \mid x_1 \in \mathbb{R}\} \) nicht schneidet.

Zur Formulierung der Bewegungsgleichungen für die Flüssigkeit werden verschiedene Koordinatensysteme verwendet:

1) Formulierung in Eulerkoordinaten (ortsfest).

Die Bewegungsgleichungen für das Geschwindigkeitsfeld \(V \) sind dann:

\[
\begin{align*}
\partial_t V + (V \cdot \nabla) V &= -\nabla p + \rho g \\
\nabla \cdot V &= 0
\end{align*}
\]

auf \(\Omega(t) \). Das sind die inkompressiblen Eulergleichungen. Hierbei ist \(p \) der Druck und \(-\nabla p \) eine Druckkraft, welche die Inkompressibilität erhält. Das System sei so reskaliert, dass die Erdbeschleunigung \(g = 1 \) sei.
Randbedingungen:

1) Oberflächenteilchen bleiben Oberflächenteilchen, d.h.
\[
\begin{pmatrix}
 u_1 \\
 u_2 \\
\end{pmatrix}
\text{ ist tangential zu } (t, \Gamma(t))_T. \tag{3}
\]

2) Undurchlässiger Boden, d.h.
\[
V \cdot \mathbf{n} \bigg|_{x_2 = -1} = -u_2 = 0. \tag{4}
\]

3) Randbedingungen für den Druck
\[
\begin{aligned}
\text{a) ohne Oberflächen spannung} & \quad p = \text{const.} = 0 \quad \text{auf } \Gamma(t) \\
\text{b) mit Oberflächen spannung} & \quad p = -bK \quad \text{auf } \Gamma(t) \\
& \quad K = \text{Krümmung von } \Gamma(t) \\
& \quad b = \text{Bondzahl (proportional zur Stärke der Oberflächen spannung)}
\end{aligned} \tag{5}
\]

Mögliche Zusatzannahme:
\[\text{rot } V(t=0) = 0\]

Dann gilt im \(\mathbb{R}^2 \):
\[\forall t \geq 0 : \quad \text{rot } V(t) = 0.\]

\[\begin{align*}
\text{Sei } \omega &= \text{rot } V. \\
\Rightarrow \quad \partial_t \omega &= -V \cdot \nabla \omega \\
\Rightarrow \quad [\omega = 0 \Rightarrow \partial_t \omega = 0]
\end{align*}\]

In diesem Fall kann man die Dynamik von (1)-(5) eindeutig mit Hilfe von zwei Gleichungen auf \(\Gamma \) beschreiben. Dann es gilt:
\[\text{rot } V = 0 \Rightarrow \exists \text{ Potential } \phi \text{ von } V = \nabla \phi.\]
\[\text{div } V = 0 \Rightarrow \Delta \phi = \text{div} \nabla \phi = \text{div } V = 0.\]
\[\exists K = K(\eta) : \partial_{x_2} \phi \big|_\Gamma = K(\eta) \partial_{x_1} \phi \big|_\Gamma , \ \text{d.h.} \ u_2 \big|_\Gamma \ \text{ist}
\]
eindeutig durch \(u_1 \big|_\Gamma \) bestimmt.

Es genügt daher, Evolutionsgleichungen für \(\eta \) mit \(\Gamma(t) = (x, \eta(x, t)) \) und \(u_1 \big|_\Gamma \) zu betrachten. \(\nu \) in \(\Omega(t) \) bekommt man dann mit Hilfe von \(D\phi \), nachdem man \(\Delta \phi = 0 \) auf \(\Omega(t) \) mit den Randbedingungen auf \(\Gamma \) und auf dem Boden gelöst hat.
Herleitung dieser beiden Gleichungen:

Im Falle ohne Oberflächenspannung, d.h. \(b=0 \), folgt aus (1):

\[
\partial_t \phi + \frac{1}{2} \nabla \| \nabla \phi \|^2 = -\nabla \rho - \nabla x_2
\]

Integrierl.

\[
\partial_t \phi = -\frac{1}{2} \| \nabla \phi \|^2 - \rho - x_2 = c(t) \quad \text{mit} \quad \partial_t \phi = 0
\]

\[
\partial_t \phi = -\frac{1}{2} \left((\partial_x \phi)^2 + (K(\eta) \partial_x \phi)^2 \right) - \eta \quad \text{für} \quad (x_n, x_2) \in \Gamma(t)
\]

\[
\partial_t \phi = -\frac{1}{2} \left(u_n^2 + (K(\eta) u_n)^2 \right) - \eta \quad \text{auf} \quad \Gamma(t)
\]

\[
\partial_t u_n = -\frac{1}{2} \partial_{x_n} \left(u_n^2 + (K(\eta) u_n)^2 \right) - \partial_{x_n} \eta \quad \text{auf} \quad \Gamma(t).
\]

(6)

Umformung der Randbedingung (3):

Differenzieren nach \(t \) und nutze

\[
(1, x_n(t), x_2(t)) = (1, u_1(t), u_2(t)) = (1, (\nabla \phi)^T).
\]

\[
\partial_t \eta = V \cdot \left(-\frac{\partial_{x_n} \eta}{\partial_x \phi} \right) = K(\eta) u_n - u_x \partial_{x_n} \eta \quad \text{auf} \quad \Gamma(t).
\]

Mit

\[
\Delta \phi = 0 \quad \text{in} \quad \Omega(t) \quad (8)
\]

\[
u_2 \big|_{x_2=-4} = \partial_{x_2} \phi \big|_{x_2=-4} = 0 \quad (9)
\]

erhalten wir durch (6)-(9) ein geschlossenes System, welches im Falle ohne Oberflächenspannung zu (1)-(5) äquivalent ist.

Im Falle von Oberflächenspannung muss man (6) durch

\[
\partial_t u_n = -\partial_{x_n} \eta - \frac{1}{2} \partial_{x_n} \left((u_n)^2 + (K(\eta) u_n)^2 \right) + b \partial_{x_n}^2 \left(\frac{\partial_{x_n} \eta}{\sqrt{1 + (\partial_{x_n} \eta)^2}} \right) \quad (6^*)
\]

ersetzen. Dann ist (6*)-(9) äquivalent zu (1)-(5).
2) Formulierung in Lagrange-Koordinaten (partiell fest):

Es sei:
\[\Gamma(t) = \{ \tilde{X}(\alpha, t) = (\tilde{X}_1(\alpha, t), \tilde{X}_2(\alpha, t)) = (x + X_1(\alpha, t), X_2(\alpha, t)) \mid \alpha \in \mathbb{R}^2 \} \]

Dann gilt:
\[\partial_t \tilde{X} = \partial_t X = V, \quad \tilde{X} = (X_1, X_2). \]

\[\Rightarrow \quad \partial_t^2 \tilde{X} = \partial_t V + (V \cdot \nabla) V = -\nabla p - (\rho) \tag{10} \]

wobei
\[V = V(\tilde{X}(\alpha, t), t), \]
\[p = p(\tilde{X}(\alpha, t), t). \]

Wir haben im Fall ohne Oberflächenspannung:
\[p(\tilde{X}(\alpha, t), t) = 0 \quad \text{auf} \quad \Gamma(t) \]

\[\Rightarrow \quad \langle \nabla p(\tilde{X}(\alpha, t), t), \partial_\alpha \tilde{X}(\alpha, t) \rangle = 0. \tag{11} \]

Multiplikation von (10) mit \(\partial_\alpha \tilde{X} \) liefert unter Berücksichtigung von (11):
\[\langle \partial_t^2 \tilde{X}, \partial_\alpha \tilde{X} \rangle + \partial_\alpha \tilde{X}_2 = 0 \]
\[\Rightarrow \quad \partial_t^2 X_1 (1 + \partial_\alpha X_2) + \partial_\alpha X_2 (1 + \partial_t^2 X_2) = 0. \tag{12} \]

Außerdem haben wir bei rotationssymmetrischen Strömungen:
\[\partial_t X_2 = \mathcal{X}(X) \partial_t X_1. \tag{13} \]

(12) und (13) zusammen liefern:
\[\partial_t^2 X_1 (1 + \partial_\alpha X_2) + \partial_\alpha X_2 (1 + \partial_t (\mathcal{X}(X) \partial_t X_1)) = 0. \]

(12), (13) beschreiben eindimensional die Evolution von \(\Gamma \). Mit (8), (9) erhält man dann die Informationen auf \(\Omega(t) \).
Durch Einführung von $U_t = \partial_t X_4$ erhält man das System:

$\partial_t X_4 = U_4$
$\partial_t X_2 = \mathcal{K}(x) U_4$
$\partial_t U_4 = -(1 + \partial_x X_4 + (\partial_x X_2) \mathcal{K}(x))^{-1}((\partial_x X_2)(1 + [\partial_t, \mathcal{K}(x)] U_4))$

wobei $[M, N] = MN - NM$ ist.

Bem.: Man kann offenbar $X_4 / t = 0$ wählen.

3.) Die Wasserwellengleichungen in der Bogenlängenformulierung:

Sei $P(t) : \mathbb{R} \rightarrow \Gamma'(t), \alpha \mapsto P(\alpha, t) = (x(\alpha, t), y(\alpha, t))$ eine Parametrisierung der Oberflächenkurve nach der Bogenlänge, d.h. $\partial_\alpha s = \sqrt{(\partial_\alpha x)^2 + (\partial_\alpha y)^2} = 1$.

Es gilt:

$\partial_t \begin{pmatrix} x \\ y \end{pmatrix} = U \hat{\eta} + T \hat{t}$, \hspace{1cm} (14)

wobei $\hat{t} = (\cos \Theta, \sin \Theta)$ ein Tangenteneinheitsvektor, $\hat{\eta} = (-\sin \Theta, \cos \Theta)$ ein Normaleneinheitsvektor, $\Theta = \arctan \frac{\partial_\alpha y}{\partial_\alpha x}$ der Tangentenwinkel, U die Normalgeschwindigkeit und T die Tangentialgeschwindigkeit (bzw. d. Bogenlängenparametrisierung auf $\Gamma'(t)$) ist.

Sind Θ und $\partial_\alpha s$ (hier $\equiv 1$) bekannt, dann können x und y durch Integration von $\begin{pmatrix} \partial_\alpha x \\ \partial_\alpha y \end{pmatrix} = \begin{pmatrix} \partial_\alpha s \cos \Theta \\ \partial_\alpha s \sin \Theta \end{pmatrix}$ rekonstruiert werden. Aus (14) folgt:

$\partial_t \Theta = \frac{1}{\partial_\alpha s} \partial_\alpha U + \frac{T}{\partial_\alpha s} \partial_\alpha \Theta$, \hspace{1cm} (15)

$\partial_t \partial_\alpha s = \partial_\alpha T - \partial_\alpha \Theta U$. \hspace{1cm} (16)
Aus der Forderung $\partial_x s = 1$ folgt dann

$$\partial_x T = \partial_x \Theta \ U$$

$$\Rightarrow T(\infty) = \int_{-\infty}^{\infty} \partial_x \Theta (\beta) \ u(\beta) \ d\beta + C.$$ \hspace{1cm} (17)
Die Normalgeschwindigkeit $U(t)$ kann aufgrund der Rotationsfreiheit des Geschwindigkeitsfeldes V unter Ausnutzung der Neumannrandbedingung (9) bei bekanntem $\Gamma(t)$ eindeutig aus der physikalischen Tangentialgeschw. $v(t)$ auf $\Gamma(t)$ bestimmt werden, wobei die Evolution von v durch die inkompressible Euler-Gleichung (1) bestimmt ist. Die Bestimmung von $U(t)$ aus $v(t)$ geschieht über das sogenannte Birkhoff-Rott Integral W.

Stelle dann das Geschwindigkeitspotential Φ, welches bekanntlich $\Delta \Phi = 0$ auf $\Omega(t)$ löst, dar durch

$$\Phi(x_0, y_0, t) = \int_{-\infty}^{\infty} G(x_0, y_0, x(\alpha), y(\alpha), \hat{n}(\alpha)) \, d\alpha$$

$$- \int_{-\infty}^{\infty} \nabla G(x_0, y_0, x_\beta(\alpha), y_\beta(\alpha)) \, d\alpha$$

für alle $(x_0, y_0) \in \Omega(t)$. Hierbei ist

$$G(x_0, y_0, x, y) = -\frac{1}{4\pi} \ln\left((x-x_0)^2 + (y-y_0)^2\right)$$

die Grundlösung der Laplace-Gleichung im \mathbb{R}^2, d.h.

$$\Delta G(x_0, y_0, x, y) = \delta(x-x_0)$$

auf \mathbb{R}^2.

ξ ist die sog. Ladungsstärke, welche auf dem Boden B definiert ist, $(x(\alpha), y(\alpha))$, $(x_\beta(\alpha), y_\beta(\alpha))$ sind Bogenlängenparametrisierungen von $\Gamma(t)$ bzw. B und μ ist die sog. Dipolstärke. Außerdem gilt für $V(\alpha) := V(x(\alpha), y(\alpha)) = \nabla \Phi(x(\alpha), y(\alpha))$:

$$V(\alpha) = \lim_{(x_0, y_0) \to (x(\alpha), y(\alpha))} \nabla \Phi(x_0, y_0) = (w(\alpha) + \frac{1}{2} y(\alpha) \hat{n}(\alpha),$$

wobei $w = \partial_x \mu$ die sogenannte Vortex-shear-Stärke ist und

$$w(\alpha) = W_1(y(x(\alpha), y(\alpha))) + W_2(\nabla(x_\beta(\alpha), y_\beta(\alpha)))$$
mit
\[(\text{Re} \, W_1(y) - i \text{Im} \, W_1(y))(\alpha, t) = \frac{1}{2\pi i} \text{PV} \int_{-\infty}^{+\infty} \frac{\chi(x', t)}{\tau(x', t) - \tau(\alpha', t)} \, dx', \]
\[(\text{Re} \, W_2(\xi) - i \text{Im} \, W_2(\xi))(\alpha, t) = \frac{1}{2\pi i} \int_{-\infty}^{+\infty} \frac{\xi(\alpha', t)}{\tau(\xi, t) - \tau(\alpha', t)} \, dx', \]

wobei \(\tau(x, t) = x(a, t) + i y(a, t) \) und \(\tau(\alpha) = x_\alpha(a) + i y_\alpha(a) \). Ist also \(v(t) \) vorgegeben, dann bestimme \(y(t) \) über
\[\frac{1}{2} \ddot{y}(t) + W(y(t)) \cdot \dot{\tau} = v(t), \]

wobei aufgrund der Neumann-Randbedingungen (2) \(\ddot{\tau}(t) \) durch \(y(t) \) ausgedrückt werden kann, wobei
\[\ddot{\tau}(x, t) = \frac{1}{2\pi} \text{Re} \int_{-\infty}^{+\infty} \frac{\chi(x''(t))}{\tau(x'') + \tau(\alpha'(t))} \, d\alpha''. \]

Für das so bestimmte \(y \) berechnen dann
\[W(y(t)) = W_1(y(t)) + W_2(\ddot{\tau}(y(t))). \]

Dann ist \(u(t) = W(y(t)) \cdot \dot{\tau}(t). \)

Für \(v \) erhalten wir aus den Euler-Gleichungen und den Randbedingungen (3), (5):
\[\partial_t v = -\partial_x y + b \partial_x^2 \theta - \frac{1}{{\tau^2}} \partial_x \left((v - \bar{T})^2 \right) + (v \cdot \dot{\tau}) \partial_t \theta. \]

Berücksichtigt man nun noch, dass die Evolution von \(x \) auf der Förderrung \(\partial_x s = 1 \) durch die Evolution von \(y \) bestimmt wird, erhält man schließlich das folgende geschlossene Differentialgleichungssystem:
\[\partial_t y = (W \dot{\tau}) \cos \theta + T \partial_x y, \quad (16) \]
\[\partial_t v = -\partial_x y + b \partial_x^2 \theta - \delta \partial_x \delta + (W \cdot \dot{\tau}) \partial_t \theta, \quad (19) \]
\(\partial_t \Theta = (\partial_\alpha \omega) \hat{\eta} + \frac{1}{2} y (\nu) \partial_\alpha \Theta - \delta \partial_\alpha \Theta \), \hspace{1cm} (20)

\(\partial_t \partial_\alpha \delta = - (\lambda + c) \partial_\alpha \Theta + 6 \partial_\alpha^3 \Theta - \partial_\alpha (\delta \partial_\alpha \delta)
+ \left((\partial_\alpha \omega) \hat{\eta} + \frac{\nu}{2} \partial_\alpha \Theta \right)^2 \) \hspace{1cm} (21)

[mit]
\(\delta = \nu - \frac{1}{\lambda} \), \hspace{1cm} (22)

\(c = (\partial_t \omega) \hat{\eta} + \delta (\partial_\alpha \omega) \hat{\eta} + \frac{\nu}{2} \partial_t \Theta
+ \frac{\nu}{2} \delta \partial_\alpha \Theta + (\cos \Theta - 1). \) \hspace{1cm} (23)

\textbf{Bem.: Im Fall unendlicher Wasserspiegel besteht }\omega\text{ nur aus }\omega_0.\)
Weitere Formulierungen der Wasserwellengleichungen:

4.) Konforme Parametrisierung von $\overline{f}(t)$.

Es gibt Beweise der lokalen Existenz- und Eindeutigkeit von Lösungen der Wasserwellengleichungen:

- in Lagrangekoordinaten (z.B. Yosihara, Craig, Wu, Schneider - Wayne)
- in Eulerkoordinaten (z.B. Iguchi, Lannes)
- in der Bogenzylinderformulierung (Ambrose - Masmoudi)
- in konformer Parametrisierung (Hunter - Ifim - Tartar)
- in der koordinateninvarianten Formulierung (Shatah - Zeng)

Globale oder fast globale Existenzresultate für hinreichend kleine Anfangsdaten sind bislang nur für den Fall von unendlicher Wassertiefe bekannt:

- für die 2-dimensionale Wasserwellengleichungen (Wu, Alazard - Delort, Ionescu - Pusateri, Hunter - Ifim - Tartar)
- für die 3-dim. Wgl. (Germain - Masmoudi - Shatah, Wu)
Für mathematische Erklärung des Auftretens typischer Wasserwellenprofile: Sei \(t = 0 \). Setzt man den Ansatz
\[
(n) (x,t) = \epsilon^\alpha A (x, \epsilon t) (x) + \mathcal{O} (\epsilon^{k+1})
\]
mit \(\epsilon \ll 1 \) und \(\alpha > 2 \) in die Wasserwellengleichungen in Euler-Koordinaten (6) - (7) ein und setzt die Terme mit niedrigster \(\epsilon \)-Potenz gleich, dann erhält man die Wellengleichung
\[
\partial_t^2 A = \partial_x^2 A
\]
mit \(T = \epsilon t \), \(\xi = \epsilon x \). Die Wellengleichung besitzt Lösungen der Form
\[
A (\xi, t) = a \sin \left(k (\xi + T) + \xi_0 \right)
\]
mit \(a, \xi_0 \in \mathbb{R} \) und \(k \geq 0 \). Da dieser Ansatz zu führender Ordnung nur langwellige Wellen liefert, sieht man zu führender Ordnung keine Dispersion. Zum Erkennen von Dispersionseffekten linearisieren wir die Wasserwellengleichung um die binäre Nulllösung. Die Linearisierung der Evolutionsgleichungen in Lagrangkoordinaten ist gegeben durch
\[
\begin{align*}
\partial_t^2 X_1 + \partial_x X_2 &= 0 \\
\partial_t X_2 &= \mathcal{K}_0 \partial_t X_1,
\end{align*}
\]
wobei der Operator \(\mathcal{K}_0 \) definiert ist durch \(U_2 \big|_{x_2=0} = \mathcal{K}_0 U_1 \big|_{x_2=0} \), wobei \(U_1, U_2 \) Lösungen von
\[
\begin{align*}
\partial_x U_1 + \partial_x U_2 &= 0 \\
\partial_x U_2 - \partial_x U_2 &= 0
\end{align*}
\]
für \((x_1, x_2) \in \square (x_1, x_2) \mid x_n \in \mathbb{R} , \quad -h \leq x_2 \leq 0 \), sowie \(U_2 \big|_{x_1=-h} = 0 \) (Wassertiefe o.B.d.A. \(= 0 \)) und \(U_1 \big|_{x_2=0} = C (x_1) \) (beliebig vorgeben) ist.
Es gilt: \(\mathcal{K}_0 \) ist ein Multiplikator. Im Fourierraum ist es eindeutig bestimmt durch
\[
\mathcal{K}_0 \hat{u} (k) = -i \tanh (k) \hat{u} (k).
\]
(Allgemein: \(\hat{K}_0 u(k) = -i \tanh(hk) \hat{u}(k) \).)

Sei \(\vec{\Delta} \phi = U = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \), dann liefert die Fourier-Transformation von
\[
\Delta \phi(x_1, x_2) = 0 \quad \text{bei} \quad x_1: \]
\[- k^2 \hat{\phi}(k, x_2) + \partial_{x_2}^2 \hat{\phi}(k, x_2) = 0.
\]
Hierzu kommen die Randbedingungen
\[
\partial_{x_2} \hat{\phi} \bigg|_{x_2 = 1} = 0,
\]
\[
\partial_{x_2} \hat{\phi} \bigg|_{x_2 = 0} = \hat{C}(k).
\]
Wir erhalten als Lösungen:
\[
\hat{\phi}(k, x_2) = \hat{C}(k) \cosh(k \cdot (1 + x_2)).
\]
Daher gilt:
\[
\hat{U}_1 \bigg|_{x_2 = 0} (k) = ik \hat{C}(k) \cosh(k (1 + x_2)),
\]
\[
\hat{U}_2 \bigg|_{x_2 = 0} (k) = k \hat{C}(k) \sinh(k (1 + x_2))
\]
\[
\Rightarrow \hat{U}_2 \bigg|_{x_2 = 0} (k) = -i \tanh(k) \hat{U}_1 \bigg|_{x_2 = 0} (k).
\]
(für allgemeines \(b \) durch Reskalieren: \(k \rightarrow h k \))

Integration der zweiten Gleichung der Linearisierung nach \(t \) und Einsetzen in die erste Gleichung liefert
\[
\partial_t^2 X_1 + \partial_k \cdot \hat{K}_0 X_1 = 0
\]
\[
\Rightarrow \partial_t^2 X_2 + \partial_k \cdot \hat{K}_0 X_2 = 0.
\]
Diese Gleichung hat Lösungen in der Form
\[
X_2(x) = e^{ik\alpha + i\omega(k)t}
\]
mit \(\omega^2(k) = k \tanh(k) \). Wir haben hier also Dispersion vorliegen, denn es gilt
\[
\lim_{|k| \to 0} \left| \frac{\omega(k)}{k} \right| = 1, \quad \lim_{|k| \to \infty} \left| \frac{\omega(k)}{k} \right| = 0.
\]

Das heißt, hier breiten sich Wellen mit kleinerem \(k \) [und damit geringerer Wellenlänge] schneller aus als Wellen mit größerem \(k \). [Genn anderer Bauern wie bei der NLS-Gleichung] Für \(|k| \to 0 \) stimmt die Anbreitungsgeschwindigkeit mit der der Lösungen der Wellengleichung überein.

Bem. 1:
In Falle von Oberflächenspannung (also \(b \neq 0 \)) kann man die oben diskutierten Rechnungen analog durchführen (mit einem zusätzlichen, von \(b \) abhängigen Term) und erhält
\[
\omega^2(k) = \left(k + bk^3 \right) \tanh(k).
\]
In diesem Fall liegt ein anderes Dispersionsverhalten vor:
\[
\lim_{|k| \to 0} \left| \frac{\omega(k)}{k} \right| = 1, \quad \frac{\omega(k)}{k} \approx -\frac{b^2}{|k|}.
\]

Bem. 2:
Für allgemeines \(b \) geht \(\tanh(k) \) in den Dispersionsrelationen über in \(\tanh(bk) \).

\[\text{Sign}(k) = \begin{cases} 1, & k \geq 0 \\ -1, & k < 0 \end{cases}\]

In Limes \(b \to \infty \) (unendliche Wasserzähne) geht der \(\tanh \) über in
\[\tanh(bk) \text{ für } b \to \infty.\]
und somit gilt auch \(\hat{\mathcal{R}} \), über in \(\hat{\mathcal{H}} \) mit
\[
\hat{\mathcal{H}}(k) = -i \text{sgn}(k).
\]
Dies ist die Hilberttransformation. \(\hat{\mathcal{R}} \) ist Regularisierung von \(\hat{\mathcal{H}} \) für kleine \(k \).

Führt man die obige Linearisierung in Knoten-koordinaten durch, dann ergibt sich
\[
\begin{align*}
\partial_t \eta &= \mathcal{R}_0 \eta_1 \\
\partial_t \eta_1 &= -\partial_x \eta
\end{align*}
\]
mit den Lösungen
\[
\begin{pmatrix} \eta \\ \eta_1 \end{pmatrix}(x,t) = A(x,t) \begin{pmatrix} 1 \\ \pm 1 \end{pmatrix},
\]
\[
A(x,t) = a \sin \left(k \left(x - c(k) t + x_0 \right) \right),
\]
\[
a, x_0 \in \mathbb{R}, \quad c(k) = \frac{\pm \sqrt{\omega^2(k)}}{k}.
\]

Auch in der Bogenlängenformulierung erhält man dieselbe Linearisierung. Lösungen der Wasserwellengleichungen, die (in führender Ordnung) ein sinusförmiges Profil haben (mit oder ohne Dispersion) heißen Airy-Wellen.
Für Beobachtung nichtlinearer Wellenereffekte wählen wir andere Skalierungen. Setzt man den Langwellenauszug der Form

\[(\eta(t)) (x, t) = \varepsilon^2 A (\varepsilon(x \pm t), \varepsilon^3 t) (\varepsilon^4) + \mathcal{O}(\varepsilon^5),\]

\(\varepsilon \ll 1\), in (6)**-(?) ein, dann erhält man zu führender Ordnung \(\varepsilon\) die KdV-Gleichung

\[\partial_t A = \pm \left(\frac{A}{\varepsilon^4} \right) \partial_x^2 A \pm \frac{A}{\varepsilon^2} A \partial_x^3 A\]

mit \(T = \varepsilon^5 t\), \(\xi = \varepsilon(x \pm t)\). Für \(b = \varepsilon^4 \frac{A}{\varepsilon^4} + 2\varepsilon^5 A^2\) erhält man mit Hilfe des Ansetzes

\[(\eta(t)) (x, t) = \varepsilon^4 A (\varepsilon(x \pm t), \varepsilon^5 t) (\varepsilon^4) + \mathcal{O}(\varepsilon^5)\]

die Kawahara-Gleichung

\[\partial_t A = \pm \nu \partial_x^2 A \pm \frac{A}{\varepsilon^2} \partial_x^3 A \pm \frac{3}{2} A \partial_x A\]

mit \(T = \varepsilon^5 t\), \(\xi = \varepsilon(x \pm t)\). Die KdV-Gleichung besitzt bekanntlich periodische Lösungen, Solitärwellenlösungen und N-Soliton-Lösungen. Folglich ist zu erwarten, dass bei den WasserrWellengleichungen (zu führender Ordnung) ebenfalls solche Wellenprofile zu beobachten sind. Lösungen der WasserrWellengleichungen, die zu führender Ordnung wie die periodischen Lösungen der KdV-Gleichung aussehen, leiten auch knoeidele Wellen.

Es gibt aber auch sowohl exakte periodische Wellenlösungen (man nennt sie auch Stokes-Wellen) als auch exakte Solitärwellenlösungen der WasserrWellengleichungen. Deren Existenz kann mit nicht-bivariaten Methoden aus der Theorie dynamischer Systeme gezeigt werden.
Es gibt zwei Typen von Stokswellen:

1.

2.

Setzt man den Ansatz

\[
\eta(x,t) = \xi A \left(\xi (x-ct), \xi^2 t \right) e^{i(k_0 x - \omega(k_0) t)} \varphi(k_0) \ + \ c.c. \ + \ \mathcal{O}(\xi^2),
\]

\(\xi \ll 1\), \(\omega(k) = \text{Sign}(k) \sqrt{k + b k^2 \tanh(k)}\), \(c = \partial_x \omega(k_0)\), \(\varphi(k_0) \in \mathbb{C}^2\) in (6)–(7) ein, dann erhält man zu führender Ordnung in \(\xi\) die NLS-Gleichung

\[
\partial_T A = i \nu_3 \partial_{x}^3 A + i \nu_2 A |A|^2
\]

mit \(T = \xi^2 t\), \(x = \xi (x-ct)\) und \(\nu_j = \nu_j(k_0) \in \mathbb{R}\). Die NLS-Gleichung beschreibt dann zu führender Ordnung die Dynamik der Einhüllenden eines modulierten oszillierenden Wellenpakettes mit Grundwellenzahl \(k_0\).

Die Fouriertransformation eines solchen Wellenpakettes sieht folgendermaßen aus:

Man kann auch periodische Wellenlösungen des Wasserwellengleichungen modulieren. Die Dynamik von modulierten periodischen Wellenzügen kann man dann zu führender Ordnung durch die sogenannten Whitham-Gleichungen (ein System
richtiger hyperbolischer Erhaltungsgleichungen) beschreiben. Die mathematisch
erigore Rechtfertigung, dass die Dynamik von Lösungen der Näherrungsgleichungen
auch bei Lösungen der Originalgleichungen zu beobachten ist, erfolgt häufig durch
den Beweis, dass der relative Fehler der Approximation auf den charakteristischen
Längen- und Zeitskalen der Approximationsgleichungen klein ist.
Für die KdV-, die KdVAM- und die NLS-Approximationen der 2-dimensionalen
Water-wellengleichungen mit endlicher Wassertiefe sind folgende Approximations-
theoreme bekannt:

Theorem 5.1:

Für alle $b_0, c_0, r_0 > 0$ existiert ein $\varepsilon > 0$, so dass für alle $\varepsilon \in \mathbb{R}$ und
alle $b \in \mathbb{R} \setminus \left\{ \frac{r_0^2}{3} \right\}$ mit $0 \leq b \leq b_0$ das folgende gilt. Sei

$$
\eta_0 \big|_{t=0}(x) = \varepsilon^2 \Phi_1(\varepsilon x),
$$
$$
u_0 \big|_{t=0}(x) = \varepsilon^2 \Phi_2(\varepsilon x),
$$

mit

$$
\max \left\{ \left\| (\Phi_1(\cdot), \Phi_2(\cdot)) \right\|_{H^{k+1}_{\varepsilon}}, \left\| (g^k \Phi_1(\cdot), g^k \Phi_2(\cdot)) \right\|_{H^{k+1}_{\varepsilon}} \right\} \leq C_0 \varepsilon^{e_l},
$$

wobei $\xi = \varepsilon x$, $s \geq 7$, $k \geq 1$, $l \geq 0$ und $g(k) = (1 + \xi^2)^{\frac{k}{2}}$. Sei

$$
\partial_\tau A_1 = \left(b_0 - \frac{A_1}{6} \right) \partial_\xi^3 A_1 - \frac{3}{2} A_2 \partial_\xi A_n,
$$
$$
\partial_\tau A_2 = \left(b_0 - \frac{A_1}{6} \right) \partial_\xi^3 A_2 + \frac{3}{2} A_2 \partial_\xi A_2,
$$

$$
A_2 \big|_{\tau=0} = \frac{1}{2} (\Phi_1 + \Phi_2), \quad A_2 \big|_{\tau=0} = \frac{1}{2} (\Phi_1 - \Phi_2).
$$

Dann existiert eine eindeutige Lösung von (6*)-(7*) mit den obigen Anfangs-
bedingungen, für die gilt:

$$
\sup_{t \in [0, T \varepsilon^{-3}]} \left\| \left(\eta_0(\cdot, t) - \psi(\cdot, t) \right) \right\|_{H^{k+1}_{\varepsilon} \times H^{k+1}_{\varepsilon}} \leq C_0 \varepsilon^{4+e_l}.
$$
\[\psi(x,t) = \varepsilon^2 A_1(\varepsilon(x-t), \varepsilon^3 t) \binom{1}{1} + \varepsilon^2 A_2(\varepsilon(x+t), \varepsilon^3 t) \binom{1}{-1}, \]

\(C_\alpha > 0 \) ist.
Theorem 5.2:

Sei \(b = \frac{1}{3} + 2\nu \xi^2 \). Für alle \(C_0, T_0 > 0 \) existiert ein \(\xi_0 > 0 \), so dass für alle \(\xi \in \mathbb{R} \) mit \(0 < \xi \leq \xi_0 \) folgendes gilt: Setzt

\[
\eta \big|_{t=0} (x) = \xi^4 \Phi_2 (\xi x), \quad u_\nu \big|_{t=0} (x) = \xi^4 \Phi_2 (\xi x)
\]

mit \(\max \left\{ \| \Phi_2 (\cdot) \|_{H_3^{s+\alpha}}, \| \partial_\xi \Phi_2 (\cdot) \|_{H_3^{s+\alpha-\frac{3}{2}}}, \| \partial_\xi \Phi_2 (\cdot) \|_{H_3^{s+\alpha-\frac{3}{2}}} \right\} \leq C_0 \xi^\ell \), \(\xi = \xi x, s \geq 7, k > 1 \) und \(\ell \geq 0 \). Setzt

\[
A_2 = \nu \partial_\xi^3 A_1 - \frac{1}{\nu} \partial_\xi^5 A_1 + \frac{3}{2} A_2 \partial_\xi^5 A_2, \quad A_2 = -\nu \partial_\xi^3 A_2 + \frac{1}{\nu} \partial_\xi^5 A_2 - \frac{1}{2} A_2 \partial_\xi^5 A_2,
\]

\[A_2 \big|_{\tau = 0} = \frac{1}{2} (\Phi_2 + \Phi_2), \quad A_2 \big|_{\tau = 0} = \frac{1}{2} (\Phi_2 - \Phi_2),\]

und sei \([0, T_\xi] \) das maximale Existenzintervall von \(A_1, A_2 \) in \(H_3^{s+\alpha} \) und \(H_3^{s+\alpha-\frac{3}{2}} \). Dann existiert eine eindeutige Lösung von (6*)-(7) zu den obigen Anfangsbedingungen mit

\[
\sup_{t \in [0, T_\xi \xi^{-s}]} \| (\eta (\cdot, t) - \Phi (\cdot, t)) \|_{H_3^{s+\alpha}} \leq C_4 \xi^{6+\ell}
\]

mit

\[C_4 > 0\]

und

\[
\Phi (x; t) = \xi^4 A_2 (\xi (x-t), \xi^5 t) \left(\Phi_2 \right) + \xi^4 A_2 (\xi (x+t), \xi^5 t) \left(\Phi_2 \right).
\]

Theorem 5.3:

Sei \(b = 0 \) und \(s \geq 7 \). Für alle \(k_0, C_4, T_0 > 0 \) existieren \(T_1, \xi_0 > 0 \), so dass für alle Lösungen \(A \in C^0 ([0, T_0], H^s (\mathbb{R}, \mathbb{C})) \) der NLS-Gleichung (24) mit

\[
\sup_{t \in [0, T_0]} \| A (\cdot, t) \|_{H^s (\mathbb{R}, \mathbb{C})} \leq C_4
\]

und alle \(\xi \in [0, \xi_0] \) folgendes gilt:
Es existiert eine Lösung von (6)-(7) mit
\[\sup_{t \in [0,T_2 \varepsilon^{-2}]} \left\| \left(\eta \right) \left(\cdot , t \right) - \varphi \left(\cdot , t \right) \right\|_{H_x^1 \left(\mathbb{R} \right)} \leq C_2 \varepsilon^{3/2} \]
mit \(C_2 > 0 \) und \(\varphi \left(x , t \right) = \varepsilon A \left(3 \left(x - c t \right) , \varepsilon^2 t \right) e^{i(\kappa \cdot x - \omega(\kappa) t)} \varphi(\kappa) + \text{c.c.} \).

Um die zentralen Ideen des (langeren) Beweis von Thm. 5.1 zu verdeutlichen, zeigen wir im Folgenden die Gültigkeit der KdV-Approximation für die Boussinesq-Gleichung
\[\partial_x^2 u = \partial_x^4 u = \partial_x^2 (u^2) \]
mit \(x \in \mathbb{R} \), \(t \in \mathbb{R} \) und \(u(x,t) \in \mathbb{R} \).

Bem.:

Setzt man den Ansatz
\[u \left(x , t \right) = \varepsilon^2 \Xi \left(\varepsilon x , \varepsilon t \right) , \quad \eta \left(x , t \right) = \varepsilon^2 \Omega \left(\varepsilon x , \varepsilon t \right) \]
in die 2-D Wellengleichungen ohne Oberflächenspannung (6)-(7) ein, dann erhält man zu führender Ordnung in \(\varepsilon \):
\[\partial_x^2 \Xi = \partial_x^4 \Xi - \varepsilon^2 \partial_x^4 \Xi + \varepsilon^2 \partial_x^2 \left(\Xi^2 \right) \]
mit \(\Xi = \varepsilon t \) und \(\xi = \varepsilon x \). Wir zeigen nun:

Satz 5.4:

Sei \(A \in C^0 \left(\left[0,T_2 \right] , H_x^2 \right) \) Lösung der KdV-Gleichung
\[\partial_t A = -\frac{1}{2} \partial_x^3 A - \frac{1}{2} \partial_x (A^2) \]
Dann existieren \(\varepsilon_0 , C > 0 \), so dass für alle \(\varepsilon \in \left(0 , 2 \right] \) gilt:
Es existiert eine Lösung \(u \) der Boussinesq-Gleichung (25) mit
\[\sup_{t \in [0,T_2 \varepsilon^{-3}]} \left\| u \left(\cdot , t \right) - \varepsilon^2 A \left(3 \left(\cdot - t \right) , \varepsilon^3 t \right) \right\|_{H_x^1} \leq C \varepsilon^{3/2} \].
Beweis:

1. Schritt: Einsetzen des Ansatzes

\[u(x,t) = \varepsilon^2 \Psi(x,t) = \varepsilon^2 A(\varepsilon(x-t), \varepsilon^3 t) \]

in (25) und formale Herleitung der KdV-Gleichung durch Gleichsetzen der Terme mit niedrigerer \(\varepsilon \)-Potenz (geht analog zur Übungsaufgabe 25).

2. Schritt: Abschätzung des Residuums

\[\text{Res}_u(\varepsilon^2 \Psi) := -\partial_t^2 (\varepsilon^2 \Psi) + \partial_x^2 (\varepsilon^2 \Psi) - \partial_x^4 (\varepsilon^2 \Psi) + \partial_x^2 ((\varepsilon^2 \Psi)^2). \]
Es ist
\[Res_u(\xi^2 \Psi) = -\xi^4 \partial_x^2 A - 2 \xi^6 \partial_T \partial_x A - \xi^8 \partial_T^2 A + \xi^4 \partial_x^2 A\]
\[\quad - \xi^6 \partial_x^4 A + \xi^6 \partial_x^2 A.\]

Löst \(A\) die KdV-Gleichung mit Koeffizienten wie in Satz 5.4 behauptet, dann ist
\[Res_u(\xi^2 \Psi) = -\xi^8 \partial_T^2 A.\]

Außerdem gilt:
\[\partial_T^2 A = -\frac{1}{2} \partial_T \left(\partial_x^2 A + \partial_x (A^2) \right) = -\frac{1}{2} \left(\partial_x^2 \partial_T A + 2 \partial_x (A \partial_T A) \right)\]
\[= \frac{1}{4} \partial_x^2 \left(\partial_x^2 A + \partial_x (A^2) \right) + \frac{1}{2} \partial_x \left(A (\partial_x^2 A + \partial_x (A^2)) \right).\]

Da \(A(T)\) nach Voraussetzung in \(H_T^3\) liegt, können wir \(\|\partial_T A\|_{H^4}\) und damit \(\|Res_u(\xi^2 \Psi)\|_{H^4}\) abschätzen und erhalten:
\[\sup_{t \in [0, T; \xi^3]} \|Res_u(\xi^2 \Psi(\cdot, t))\|_{H_x^4} \leq C_{Res} \xi^{15/2},\]
\[\sup_{t \in [0, T; \xi^3]} \|\partial_x^{-4} Res_u(\xi^2 \Psi(\cdot, t))\|_{H_x^4} \leq C_{Res} \xi^{13/2}\]

für ein \(C_{Res} > 0\). Beachte hierbei, dass \(\|\cdot\|_{L^2} = \xi^{-3/2} \|\cdot\|_{L_x^2}\) (folgt aus dem Transformationssatz) und \(\partial_x^{-1} = \xi^{-1} \partial_x^{-1}\) ist.

3. Schritt: Schreibe \(u\) als Approximation + Fehler, also
\[u = \xi^2 \Psi + \xi^{3/2} R,\]

stelle die Differentialgleichung für \(R\) auf und schätze \(R(t)\) auf \([0, T; \xi^3]\) ab. Es gilt
\[\partial_t^2 R = \partial_x^2 R - \partial_x^4 R + 2 \xi^2 \partial_x^2 (\Psi R) + \xi^{7/2} \partial_x^2 (R^2) + \xi^{-3/2} Res_u(\xi^2 \Psi).\] (26)

Multipliziere (26) mit \(-\partial_t \partial_x^2 R\) und integriere bzh. \(x\). Dies liefert
\[
\]
Linke Seite:
\[
\int_{\mathbb{R}} - (\partial_t \partial_x^{-2} R) \partial_x^2 R \, dx = \frac{1}{2} \partial_t \int_{\mathbb{R}} (\partial_t \partial_x^{-4} R)^2 \, dx.
\]

Rechte Seite:
\[
\int_{\mathbb{R}} - (\partial_t \partial_x^{-2} R) \partial_x^2 R \, dx = -\frac{1}{2} \partial_t \int_{\mathbb{R}} R^2 \, dx
\]
\[
\int_{\mathbb{R}} (\partial_t \partial_x^{-2} R) \partial_x^4 R \, dx = -\partial_t \int_{\mathbb{R}} (\partial_x R)^2 \, dx
\]
\[
- \int_{\mathbb{R}} (\partial_t \partial_x^{-2} R) \partial_x^2 (\Psi R) \, dx = -\int_{\mathbb{R}} (\partial_t R) \Psi R \, dx
\]
\[
= -\frac{1}{2} \partial_t \int_{\mathbb{R}} \Psi R^2 \, dx + \varepsilon \int_{\mathbb{R}} \partial_x \Psi R^2 \, dx
\]
\[
- \int_{\mathbb{R}} (\partial_t \partial_x^{-2} R) \partial_x^2 (R^2) \, dx = -2 \int_{\mathbb{R}} \partial_t R \cdot R^2 \, dx
\]
\[
= -\frac{2}{3} \partial_t \int_{\mathbb{R}} R^3 \, dx
\]
\[
- \int_{\mathbb{R}} (\partial_t \partial_x^{-2} R) Res_u (\varepsilon^2 \Psi) \, dx = -\int_{\mathbb{R}} (\partial_t \partial_x^{-4} R) \partial_x^4 Res_u (\varepsilon^2 \Psi) \, dx,
\]
wo\(\varepsilon\) bezeichnet:
\[
/I_4/ \leq \varepsilon \| \partial_t \Psi \|_{L^\infty} \cdot \| R \|^2_{L^2},
\]
\[
/I_2/ \leq \| \partial_t \partial_x^{-1} R \|_{L^2} \cdot \| \partial_x^{-4} Res_u (\varepsilon^2 \Psi) \|_{L^2}.
\]
Wir definieren folglich die Energie
\[
E = \int_{\mathbb{R}} (\partial_t \partial_x^{-4} R)^2 + R^2 + (\partial_x R)^2 + 2 \varepsilon^2 \Psi R^2 + \frac{4}{3} \varepsilon^{2/3} R^3 \, dx.
\]
⇒ ∀ M > 0 \exists n, ε > 0 \forall \epsilon \in]0, \epsilon_1[:

\|R\|_{H^2} \leq C_n \sqrt{\epsilon}, \text{ solange } \epsilon \in M.

Außerdem erfüllt E die Differentialungleichung

\[\frac{d}{dt} E \leq \tilde{C} \left(\epsilon^2 E + \epsilon^3 E^{4/2} \right) \]

\[\leq C_1 \epsilon^3 (E + 1) \]

mit C > 0 unabhängig von \epsilon. Mit Hilfe der Gronwall'schen Ungleichung

folgt daraus, dass

\[\sup_{t \in [0, T \epsilon^3]} E(t) = C T \epsilon e^{C T} =: M = \Theta(1). \]

Damit erhalten wir für hinreichend kleines \epsilon die Behauptung des Satzes 5.4. \qed
Bem.: Zum Beweis der lokalen Existenz und Eindeutigkeit der Boussinesq-Gleichung schreibt man die Gleichung als System von zwei Gleichungen erster Ordnung bzgl. $\partial_t u$ für die Variablen u und $\partial_t (\partial_t^4 + \partial_x^2) u$. Untersucht man die Variation der Konstanten-Formel für dieses System, dann kann man im Raum $C([T_0,T_] \times H^s \times H^s)$ für $s > 1$ und hinreichend kleines T_0 die Kontraktionseigenschaft nachweisen und den Banach'schen Fixpunktsatz anwenden. Die lokale Existenz und Eindeutigkeit von Lösungen der Boussinesq-Gleichung kombiniert mit den Fehlerabschätzungen des vorigen Satzes liefert (durch iterative Anwendung der lokalen Ex- und - Ein- Aussegs) die Existenz und Eindeutigkeit von Lösungen der Boussinesq-Gleichung für $t \in [T_0, T_0^*]$ für Anfangsdaten u_0 im Fall der KdV-Approximation, die Regulärität ist $u(\cdot,t), \partial_t (\partial_t^4 + \partial_x^2) u(\cdot,t) \in H^4$ (durch unbekannte Voraussetzung der Fehlerabschätzungen auf H^s mit $s > 1$ erhält man auch $u(\cdot,t), \partial_t (\partial_t^4 + \partial_x^2) u(\cdot,t) \in H^s, s > 1$, wann auch die Anfangsdaten in H^s sind).