Prof. Dr.

Marcel Griesemer

Professor - Prüfungsausschussvorsitzender Master Mathematik / Leiter der Abteilung für Analysis
Institut für Analysis, Dynamik und Modellierung
Abteilung für Analysis

Kontakt

+49 711 685-65757
+49 711 685-65594

Website
Visitenkarte (VCF)

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Raum: 8.164

Sprechstunde

nach Vereinbarung

Fachgebiet

  • Spectral and Dynamical Properties of many body Quantum Systems
  • Quantum Field Theory
  • Applied Analysis
  • Operator Theory

Sprecher des Graduiertenkolleg 1838

GRK1838-Logo

 

 

 

A.  ARTICLES IN REFEREED JOURNALS
33. Griesemer, M., Wünsch A.: On the Domain of the Nelson Hamiltonian. accepted by J. Math. Phys.
32. Griesemer, M., Linden, U.: Stability of the two-dimensional Fermi polaron. Lett. Math. Phys. (2018), https://doi.org/10.1007/s11005-018-1055-2
31. Griesemer, M.: On the dynamics of polarons in the strong coupling limit. Rev. Math. Phys. 29, no. 10 (2017)
30. Griesemer, M., Schmid, J., Schneider, G.: On the dynamics of the mean-field polaron in the high-frequency limit. Lett. Math. Phys. 107, no. 10, 1809-1821 (2017)
29. Schmid, J., Griesemer, M.: Well-posedness of non-autonomous linear evolution equations in uniformly convex spaces. Math. Nachr.(2016)
28. Griesemer, M., Wünsch A.: Self-adjointness and domain of the Fröhlich Hamiltonian. J. Math. Phys. , 57 (2016)
27. De Roeck W., Griesemer, M., Kupiainen A.: Asymptotic Completeness for the Massive Spin-Boson Model. Adv. Math., 268 (2015), 62 -- 84.
26. Schmid, J., Griesemer, M.: Kato's Theorem on the Integration of Non-Autonomous Linear Evolution Equations. Math. Phys. Anal. Geom., 17 (2014), no. 3-4, 265�271.
25. Anapolitanos, I., Griesemer, M.: Multipolarons in Constant Magnetic Fields. Ann. Henri Poincar�, 15 (2014) 1037--1059.
24. Griesemer, M., Wellig, D.: The strong-coupling polaron in static electric and magnetic fields. J. Phys. A: Math. Theor., 46 (2013) 425202.
23. Griesemer, M., Hantsch, F., Wellig, D.: On the Magnetic Pekar Functional and the Existence of Bipolarons. Rev. Math. Phys. 24, (2012)
22. Griesemer, M., Hantsch, F.: Unique Solutions to Hartree-Fock Equations for Closed Shell Atoms. ARMA 203, 883--900 (2012)
21. Fröhlich, J., Griesemer, M., Sigal, M.I.: Spectral Renormalization Group and Local Decay in the Standard Model of the Non-relativistic Quantum Electrodynamics. Rev. Math. Phys. 23, 179--209 (2011)
20. Griesemer, M., Zenk, H.: On the Atomic Photoeffect in Non-relativistic QED. Comm. Math. Phys. 300, 615--639 (2010)
19. Griesemer, M., Moeller, J.: Bounds on the Minimal Energy of Translation Invariant N-Polaron Systems.Comm. Math. Phys. 297, 283--297 (2010)
18. Fröhlich, J., Griesemer, M., Sigal, M.I.: On Spectral Renormalization Group. Rev. Math. Phys. 21 (2009), no. 4, 511--548.
17. Griesemer M., Hasler, D.: Analytic Perturbation Theory and Renormalization Analysis of Matter Coupled to Quantized Radiation. Ann. Henri Poincare 10 (2009), no. 3, 577--621. 2009 AHP Distinguished Paper Award
16. Griesemer M., Zenk H.: Asymptotic Electromagnetic Fields in Non-relativistic QED: the Problem of Existence Revisited. J. Math. Anal. Appl. 354 (2009) 239 - 246.
15. Griesemer M., Hasler D.: On the Smooth Feshbach-Schur Map. J. Funct. Anal., 254 (2008) 2329 - 2335.
14. Fröhlich, J., Griesemer, M., Sigal, M.I.: Spectral Theory for the Standard Model of Non-Relativistic QED. Commun. Math. Phys. 283 (2008) 613 - 646.
13. Fröhlich, J., Griesemer, M., Schlein, B.: Rayleigh Scattering at Atoms with Dynamical Nuclei. Commun. Math. Phys. 271, 387–430 (2007).
12. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic Completeness for Compton Scattering. Commun. Math. Phys. 252, 415–476 (2004).
11. Griesemer, M.: Exponential decay and ionization thresholds in non-relativistic quantum electrodynamics. J. Funct. Anal., 210 (2004) 321–340.
10. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic Completeness for Rayleigh Scattering. Ann. Henri Poincare, 3 (2002), no. 1, 107–170.
9. Fröhlich, J., Griesemer, M., Schlein, B.: Asymptotic Electromagnetic Fields in Models of Quantum-Mechanical Matter Interacting with the Quantized Radiation Field. Adv. Math. 164, No.2, 349–398 (2001).
8. Griesemer, M., Lieb, E., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Invent. math. 145 (2001) 3, 557–595.
7. Griesemer, M., Kapuya, J.P.: Bounding Derivatives of Alternating Power Series. Alabama Journal of Mathematics 25, Number 1 (2001), 17–22.
6. Griesemer, M., Lewis, R.T., Siedentop, H.: A minimax principle for eigenvalues in spectral gaps: Dirac operators with Coulomb potentials. Documenta Math. 4 (1999) 275–283.
5. Griesemer, M., Tix, C.: Instability of a pseudo-relativistic model of matter with self-generated magnetic field. J. Math. Phys., vol. 40, 4, 1780–1791 (1999).
4. Griesemer, M., Lutgen, J.: Accumulation of discrete eigenvalues of the radial Dirac operator. J. Functional Analysis, 162, 120–134 (1999).
3. Griesemer, M., Siedentop, H.: A minimax principle for the eigenvalues in spectral gaps. J. London Math. Soc., (2) 60 (1999) 490–500.
2. Griesemer, M.: N-body quantum systems with singular potentials. Ann. Inst. Henri Poincare, physique theorique, Vol. 69, no 2, 1998, p. 135–187. PDF
1. Griesemer, M.: Exponential bounds for continuum eigenfunctions of N-body Schrödinger operator. Helv. Phys. Acta 70 (1997) 854–857. PDF
B.  PROCEEDING ARTICLES
1. Griesemer, M.: A minimax principle for eigenvalues in spectral gaps. In: Differential Equations and Mathematical Physics, AMS/IP Studies in Advanced Mathematics, Vol. 16. (proceedings of the UAB-GIT ICDEMP 1999).
2. Griesemer, M.: Non-relativistic Matter and Quantized Radiation. In: Lecture Notes in Physics, 695/2006. springerlink
Zum Seitenanfang