Programm
Veranstaltungsort: Seminarraum 7.530 (vormittags), 7.527 (nachmittags) Pfaffenwaldring 57, 70569 Stuttgart
-
11:15 Uhr, Raum 7.530 - Dr. Helmut Linde, Covestro Deutschland AG
Vortragstitel: An improved bound for the ground state energy of a Schrödinger operator on a loop
Abstract: Consider a closed curve of length $2\pi$ with curvature $\kappa(s)$ and the Schrödinger operator $H$ with $\kappa^2$ as the potential term. Let $\lambda_\Gamma$ be the lowest eigenvalue of $H$. The question about the minimal possible value of $\lambda_\Gamma$ has attracted attention since the year 2004, when Benguria and Loss established a connection between this problem and the Lieb-Thirring conjecture in one dimension. The also conjectured that $\lambda_\Gamma \ge 1$, but a proof of this estimate has not been found yet. In the talk I will show how to establish a new lower bound of $0.81$ on $\lambda_\Gamma$, improving on the best previous estimate of approximately $0.60$.
-
Mittagessen, Kaffee und Diskussion
-
14:00 Uhr, Raum 7.527 - Prof. Dr. Rupert Frank, LMU München
Vortragstitel: Riesz means for some explicitly solvable operators and applications to LT inequalities
Abstract: Recently, Carvalho Corso, Weidl and Zeng have shown that the semiclassical approximation provides an upper bound for Riesz means of order $\gamma\geq 1$ for the Coulomb Hamiltonian. We show that their restriction $\gamma\geq 1$ is optimal in dimensions $d\geq 4$ and we present both positive and negative partial results in dimensions 2 and 3. Our strategy is applicable to other examples of operators with explicitly computable spectrum and provides, among other things, a partially alternative proof of the Helffer—Robert result.
The talk is based on joint work with Bernard Helffer and Francois Nicoleau.
Organisatoren
Die Veranstaltung wird unterstützt durch den Sonderforschungsbereich:
CRC TRR 352: Mathematics of Many-Body Quantum Systems and Their Collective Phenomena
Logo des SFB TRR 352
Kontakt:

Timo Weidl
Prof. Dr.Professor - Lehrstuhl für Analysis und Mathematische Physik
- Profil-Seite
- +49 711 685 65534
- E-Mail schreiben
- Termine nach Vereinbarung über das Sekretariat.
[Bild: Robin Lang, 2018]

Elke Peter
Sekretariat am Lehrstuhl für Analysis und Mathematische Physik
[Bild: Robin Lang, 2018]