https://www.trr352.de/index.html

Workshop on Spectral Theory

Freitag, 27. Juni 2025

Wissenschaftliche Zusammenarbeit der Ludwig-Maximilians-Universität München und der Universität Stuttgart

Programm

Veranstaltungsort: Seminarraum 7.530 (vormittags), 7.527 (nachmittags) Pfaffenwaldring 57, 70569 Stuttgart

      Vortragstitel: An improved bound for the ground state energy of a Schrödinger operator on a loop
       Abstract:  Consider a closed curve of length $2\pi$ with curvature $\kappa(s)$ and the Schrödinger operator $H$ with $\kappa^2$ as the potential term. Let $\lambda_\Gamma$ be the lowest eigenvalue of $H$. The question about the minimal possible value of $\lambda_\Gamma$ has attracted attention since the year 2004, when Benguria and Loss established a connection between this problem and the Lieb-Thirring conjecture in one dimension. The also conjectured that $\lambda_\Gamma \ge 1$, but a proof of this estimate has not been found yet. In the talk I will show how to establish a new lower bound of $0.81$ on $\lambda_\Gamma$, improving on the best previous estimate of approximately $0.60$.  

 

  • Mittagessen, Kaffee und Diskussion

    Vortragstitel: Riesz means for some explicitly solvable operators and applications to LT inequalities
     Abstract: Recently, Carvalho Corso, Weidl and Zeng have shown that the semiclassical approximation provides an upper bound for Riesz means of order $\gamma\geq 1$ for the Coulomb Hamiltonian. We show that their restriction $\gamma\geq 1$ is optimal in dimensions $d\geq 4$ and we present both positive and negative partial results in dimensions 2 and 3. Our strategy is applicable to other examples of operators with explicitly computable spectrum and provides, among other things, a partially alternative proof of the Helffer—Robert result.
The talk is based on joint work with Bernard Helffer and Francois Nicoleau.

 

Organisatoren

Kontakt:

Dieses Bild zeigt Timo Weidl

Timo Weidl

Prof. Dr.

Professor - Lehrstuhl für Analysis und Mathematische Physik

[Bild: Robin Lang, 2018]

Dieses Bild zeigt Elke Peter

Elke Peter

 

Sekretariat am Lehrstuhl für Analysis und Mathematische Physik

Zum Seitenanfang