Dieses Bild zeigt Timo Weidl

Timo Weidl

Prof. Dr.

Professor - Lehrstuhl für Analysis und Mathematische Physik
Institut für Analysis, Dynamik und Modellierung
Lehrstuhl für Analysis und Mathematische Physik
[Foto: Robin Lang, 2018]

Kontakt

+49 711 685 65534
+4971168565594

Website
Visitenkarte (VCF)

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Raum: 8.347

Sprechstunde

nach Vereinbarung

Fachgebiet

Der Schwerpunkt meiner Forschung liegt in der Spektralanalyse von Differential- und Integraloperatoren mit Anwendungen in der Quantenmechanik.

  1. Frank, Rupert L.; Laptev, Ari; Weidl, Timo (2021): Lieb-Thirring Inequalities,.
  2. Kovar\’ık, Hynek; Ruszkowski, Bartosch; Weidl, Timo (2018): Melas-type bounds for the Heisenberg Laplacian on bounded domains, in: Journal of Spectral Theory, European Mathematical Society Publishing House (Journal of Spectral Theory), Jg. 8, Nr. 2, S. 413--434, doi: 10.4171/jst/200.
  3. Kovarik, Hynek; Ruszkowski, Bartosch; Weidl, Timo (2017): Spectral estimates for the Heisenberg Laplacian on cylinders., in: Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.), (Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.)), S. 433–446.
  4. Hänel, André; Weidl, Timo (2017): Spectral asymptotics for the Dirichlet Laplacian with a Neumann window via a Birman-Schwinger analysis of the Dirichlet-to-Neumann operator., in: Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.), (Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (eds.)), S. 315–352.
  5. Barseghyan, Diana; Exner, Pavel; Kovarik, Hynek; u. a. (2016): Semiclassical bounds in magnetic bottles, in: Reviews in Mathematical Physics, World Scientific (Reviews in Mathematical Physics), Jg. 28, Nr. 1, S. 1650002, doi: 10.1142/S0129055X16500021.
  6. Hänel, André; Weidl, Timo (2016): Eigenvalue asymptotics for an elastic strip and an elastic plate with a crack., in: Quarterly journal of mechanics and applied mathematics, Oxford Univ. Press (Quarterly journal of mechanics and applied mathematics), Jg. 69, Nr. 4, S. 319–352, doi: 10.1093/qjmam/hbw009.
  7. Kovarik, Hynek; Weidl, Timo (2015): Improved Berezin-Li-Yau inequalities with magnetic field., Proceedings of the Royal Society Of Edinburgh. Section A, Mathematics, Cambridge Univ. Press (Proceedings of the Royal Society Of Edinburgh. Section A, Mathematics), doi: 10.1017/S0308210513001595.
  8. Kovarik, Hynek; Weidl, Timo (2015): Improved Berezin-Li-Yau inequalities with magnetic field., Proceedings of the Royal Society Of Edinburgh. Section A, Mathematics, Cambridge Univ. Press (Proceedings of the Royal Society Of Edinburgh. Section A, Mathematics), doi: 10.1017/S0308210513001595.
  9. Förster, Clemens; Weidl, Timo (2012): Trapped modes in an elastic plate with a hole., in: St. Petersburg Mathematical Journal, (St. Petersburg Mathematical Journal), Jg. 23, Nr. 1, S. 179–202.
  10. Geisinger, Leander; Laptev, Ari; Weidl, Timo (2011): Geometrical versions of improved Berezin-Li-Yau inequalities., in: Journal of Spectral Theory 1., (Journal of Spectral Theory 1.), Nr. 1, S. 87–109.
  11. Weidl, Timo; World Scientific Publishing (Hrsg.) (2011): Semiclassical Spectral Bounds and Beyond., in: Mathematical results in quantum physics, (Mathematical results in quantum physics), S. 110–129, doi: 10.1142/9789814350365_0009.
  12. Geisinger, Leander; Weidl, Timo (2011): Sharp spectral estimates in domains of infinite volume., in: Reviews in Mathematical Physics., (Reviews in Mathematical Physics.), Jg. 23, Nr. 6, S. 615–641, doi: 10.1142/S0129055X11004394.
  13. Förster, Clemens; Weidl, Timo (2011): Trapped modes in an elastic plate with a hole., in: Rossiĭskaya Akademiya Nauk. Algebra i Analiz, (Rossiĭskaya Akademiya Nauk. Algebra i Analiz), Jg. 23, Nr. 1, S. 255–288.
  14. Geisinger, Leander; Weidl, Timo (2010): Universal bounds for traces of the Dirichlet Laplace operator., in: Journal of the London Mathematical Society. Second Series, (Journal of the London Mathematical Society. Second Series), Jg. 82, Nr. 2, S. 395–419, doi: https://doi.org/10.1112/jlms/jdq033.
  15. Weidl, Timo (1994): Estimates for operators of the form b(x)a(D)  in non-powerlike ideals., in: St.-Petersburg Mathematical Journal, (St.-Petersburg Mathematical Journal), Jg. 5, Nr. 5, S. 907–923.

Kontakt:

Dieses Bild zeigt Timo Weidl

Timo Weidl

Prof. Dr.

Professor - Lehrstuhl für Analysis und Mathematische Physik

[Foto: Robin Lang, 2018]

Dieses Bild zeigt Elke Peter

Elke Peter

 

Sekretariat am Lehrstuhl für Analysis und Mathematische Physik

Zum Seitenanfang