Dieses Bild zeigt Christina Lienstromberg

Christina Lienstromberg

Frau Jun.-Prof. Dr.

Professorin - Leiterin der Abteilung für Differentialgleichungen
Institut für Analysis, Dynamik und Modellierung
Abteilung für Differentialgleichungen

Kontakt

+49 711 685 65523

Visitenkarte (VCF)

Pfaffenwaldring 57
70569 Stuttgart
Deutschland
Raum: 8.560

Sprechstunde

Terminvereinbarung und Anfragen per E-Mail.

Forschungsgebiet: Applied Analysis

  • Partial differential equations and free-boundary value problems
  • Modelling and analysis of non-Newtonian thin fluid films
  • Rimming flows
  • Data-driven fluid dynamics

  1. C. Lienstromberg, S. Schiffer, und R. Schubert, „A data-driven approach to viscous fluid mechanics: The stationary case“, Arch. Rational Mech. Anal., Bd. 247, Nr. 30, Art. Nr. 30, 2023, doi: 10.1007/s00205-023-01849-w.
  2. C. Lienstromberg und J. J. L. Velázquez, „Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting“. arXiv, to appear in Pure and Applied Analysis, 2023. doi: 10.48550/ARXIV.2203.00075.
  3. P. Gladbach, J. Jansen, und C. Lienstromberg, „Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off“, 2023, doi: 10.48550/ARXIV.2301.10300.
  4. C. Lienstromberg, S. Schiffer, und R. Schubert, „A variational approach to the non-newtonian Navier-Stokes equations“, 2023. doi: doi:10.48550/ARXIV.2312.03546.
  5. O. Assenmacher, G. Bruell, und C. Lienstromberg, „Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability“, Comm. Partial Differential Equations, Bd. 47, Nr. 1, Art. Nr. 1, 2022, doi: 10.1080/03605302.2021.1957929.
  6. J. Jansen, C. Lienstromberg, und K. Nik, „Long-time behaviour and stability for quasilinear doubly degenerate parabolic equations of higher order“. arXiv, 2022. doi: 10.48550/ARXIV.2204.08231.
  7. C. Lienstromberg, T. Pernas-Castano, und J. J. L. Velázquez, „Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid“, J. Nonlinear Sci., Bd. 32, Nr. 2, Art. Nr. 2, 2022, doi: 10.1007/s00332-021-09750-0.
  8. J. Escher, P. Knopf, C. Lienstromberg, und B.-V. Matioc, „Stratified periodic water waves with singular density gradients“, Ann. Mat. Pura Appl. (4), Bd. 199, Nr. 5, Art. Nr. 5, 2020, doi: 10.1007/s10231-020-00950-1.
  9. C. Lienstromberg und S. Müller, „Local strong solutions to a quasilinear degenerate fourth-order thin-film equation“, NoDEA Nonlinear Differential Equations Appl., Bd. 27, Nr. 2, Art. Nr. 2, 2020, doi: 10.1007/s00030-020-0619-x.
  10. J. Escher und C. Lienstromberg, „Travelling waves in dilatant non-Newtonian thin films“, J. Differential Equations, Bd. 264, Nr. 3, Art. Nr. 3, 2018, doi: 10.1016/j.jde.2017.10.015.
  11. J. Escher, P. Gosselet, und C. Lienstromberg, „A note on model reduction for microelectromechanical systems“, Nonlinearity, Bd. 30, Nr. 2, Art. Nr. 2, 2017, doi: 10.1088/1361-6544/aa4ff9.
  12. C. Lienstromberg, „Well-posedness of a quasilinear evolution problem modelling MEMS with general permittivity“, J. Evol. Equ., Bd. 17, Nr. 4, Art. Nr. 4, 2017, doi: 10.1007/s00028-016-0375-x.
  13. J. Escher und C. Lienstromberg, „A survey on second-order free boundary value problems modelling MEMS with general permittivity profile“, Discrete Contin. Dyn. Syst. Ser. S, Bd. 10, Nr. 4, Art. Nr. 4, 2017, doi: 10.3934/dcdss.2017038.
  14. J. Escher und C. Lienstromberg, „Finite-time singularities of solutions to microelectromechanical systems with general permittivity“, Ann. Mat. Pura Appl. (4), Bd. 195, Nr. 6, Art. Nr. 6, 2016, doi: 10.1007/s10231-016-0549-8.
  15. J. Escher und C. Lienstromberg, „A qualitative analysis of solutions to microelectromechanical systems with curvature and nonlinear permittivity profile“, Comm. Partial Differential Equations, Bd. 41, Nr. 1, Art. Nr. 1, 2016, doi: 10.1080/03605302.2015.1105259.
  16. C. Lienstromberg, „On qualitative properties of solutions to microelectromechanical systems with general permittivity“, Monatsh. Math., Bd. 179, Nr. 4, Art. Nr. 4, 2016, doi: 10.1007/s00605-015-0744-5.
  17. C. Lienstromberg, „A free boundary value problem modelling microelectromechanical systems with general permittivity“, Nonlinear Anal. Real World Appl., Bd. 25, S. 190--218, 2015, doi: 10.1016/j.nonrwa.2015.03.008.
Abteilung für Differentialgleichungen

Promotionsstudierende
Juri Joussen M.Sc.

Espen Xylander M.Sc.

Masterstudierende
Adrian Schoch B.Sc.

25.02.-01.03.2024 Dr. Stefan Schiffer (MPI Leipzig)
25.09.-29.09.2023 Dr. Stefan Schiffer (MPI Leipzig)
02.05.-04.05.2023 Prof. Michael Ortiz (Hausdorf Center for Mathematics Bonn/ California Institute of Technology
27.02.-03.03.2023 Dr. Richard Schubert (Universität Bonn)
26.02.-05.03.2023 Dr. Stefan Schiffer (MPI Leipzig)
27.01.-04.02.2023  Dr. Jonas Jansen (Lund University)
26.01.-04.02.2023 Dr. Katerina Nik (Universität Wien)
22.01.-29.01.2023 Dr. Stefan Schiffer (MPI Leipzig)
08.01.-14.01.2023 Dr. Jonas Jansen (Lund University)
08.01.-11.01.2023 Dr. Gabriele Brüll (Lund University)
01.12.-02.12.2022 Dr. Richard Schubert (Universität Bonn)
20.05.2022 Dr. Richard Schubert (Universität Bonn)

 

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations,
PDE-Seminar in Delft, 03.11.2022

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations, Conference "Recent Trends in Fluid Mechanics" am ICMAT Madrid, 26.09.2022

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations,
Arbeitsgruppenseminar der "AG Nichtlineare Partielle Differentialgleichungen" in Karlsruhe, 17.05.2022

Forschungsseminar "Seminar on PDE in the Sciences" in Bonn, 08.04.2022

Lehre im Sommersemester 2024

 

Vorlesungen

  • WiSe 2023/24: Partielle Differenzialgleichungen und Modellierung
  • SoSe 2023: Einführung in die Partiellen Differentialgleichung
  • WiSe2022/23: Analytic semigroups and parabolic evolution equations
  • SoSe 2022: Strongly continuous semigroups and hyperbolic evolution equations.

Seminare

Masterarbeiten:

  • A justification of the thin-film approximation for the Stokes flow (2023)
  • Global Weak Solutions to the Ellis Thin-Film Equation (2022)
  • A free-boundary problem for the Newtonian thin-film equation with mobilities hn, n (1, 2) and some aspects on the non-Newtonian case (2022)
  • Non-Newtonian two-phase thin-film problems; Local Existence, uniqueness and stability (2021)
  • Transport-Reaction Models (2021)

Bachelorarbeiten:

  • Grundlagen der Variationsrechnung und eine Anwendung der Navier-Stokes Gleichungen (2024)

  • Modelling And Analysis Of Non-Newtonian Rimming Flows (2024)

 

Sekretariat:

Dieses Bild zeigt Elke Peter

Elke Peter

 

Sekretariat am Lehrstuhl für Analysis und Mathematische Physik

Zum Seitenanfang