This image shows Christina Lienstromberg

Christina Lienstromberg

Jun.-Prof. Dr.

Professor - Head of Research Group on Differential Equations
Institute of Analysis, Dynamics and Modeling
Head of Research Group on Differential Equations

Contact

+49 711 685 65523

Business card (VCF)

Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 8.560

Office Hours

E-mail me for appointments and inquiries using.

Research field: Applied Analysis

  • Partial differential equations and free-boundary value problems
  • Modelling and analysis of non-Newtonian thin fluid films
  • Rimming flows
  • Data-driven fluid dynamics

  1. I. M. Karabash, C. Lienstromberg, and J. J. L. Velázquez, “Multi-parameter Hopf bifurcations of rimming flows,” 2024, doi: https://doi.org/10.48550/arXiv.2406.11690.
  2. C. Lienstromberg, S. Schiffer, and R. Schubert, “A data-driven approach to viscous fluid mechanics: The stationary case,” Arch. Rational Mech. Anal., vol. 247, Art. no. 30, 2023, doi: 10.1007/s00205-023-01849-w.
  3. J. Jansen, C. Lienstromberg, and K. Nik, “Long-Time Behavior and Stability for Quasilinear Doubly Degenerate Parabolic Equations of Higher Order,” SIAM Journal on Mathematical Analysis, vol. 55, Art. no. 2, 2023, doi: 10.1137/22M1491137.
  4. C. Lienstromberg and J. J. L. Velázquez, “Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting.” arXiv, to appear in Pure and Applied Analysis, 2023. doi: 10.48550/ARXIV.2203.00075.
  5. P. Gladbach, J. Jansen, and C. Lienstromberg, “Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off,” 2023, doi: 10.48550/ARXIV.2301.10300.
  6. C. Lienstromberg, S. Schiffer, and R. Schubert, “A variational approach to the non-newtonian Navier-Stokes equations,” 2023. doi: doi:10.48550/ARXIV.2312.03546.
  7. O. Assenmacher, G. Bruell, and C. Lienstromberg, “Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability,” Comm. Partial Differential Equations, vol. 47, Art. no. 1, 2022, doi: 10.1080/03605302.2021.1957929.
  8. C. Lienstromberg, T. Pernas-Castano, and J. J. L. Velázquez, “Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid,” J. Nonlinear Sci., vol. 32, Art. no. 2, 2022, doi: 10.1007/s00332-021-09750-0.
  9. J. Escher, P. Knopf, C. Lienstromberg, and B.-V. Matioc, “Stratified periodic water waves with singular density gradients,” Ann. Mat. Pura Appl. (4), vol. 199, Art. no. 5, 2020, doi: 10.1007/s10231-020-00950-1.
  10. C. Lienstromberg and S. Müller, “Local strong solutions to a quasilinear degenerate fourth-order thin-film equation,” NoDEA Nonlinear Differential Equations Appl., vol. 27, Art. no. 2, 2020, doi: 10.1007/s00030-020-0619-x.
  11. J. Escher and C. Lienstromberg, “Travelling waves in dilatant non-Newtonian thin films,” J. Differential Equations, vol. 264, Art. no. 3, 2018, doi: 10.1016/j.jde.2017.10.015.
  12. J. Escher, P. Gosselet, and C. Lienstromberg, “A note on model reduction for microelectromechanical systems,” Nonlinearity, vol. 30, Art. no. 2, 2017, doi: 10.1088/1361-6544/aa4ff9.
  13. C. Lienstromberg, “Well-posedness of a quasilinear evolution problem modelling MEMS with general permittivity,” J. Evol. Equ., vol. 17, Art. no. 4, 2017, doi: 10.1007/s00028-016-0375-x.
  14. J. Escher and C. Lienstromberg, “A survey on second-order free boundary value problems modelling MEMS with general permittivity profile,” Discrete Contin. Dyn. Syst. Ser. S, vol. 10, Art. no. 4, 2017, doi: 10.3934/dcdss.2017038.
  15. J. Escher and C. Lienstromberg, “Finite-time singularities of solutions to microelectromechanical systems with general permittivity,” Ann. Mat. Pura Appl. (4), vol. 195, Art. no. 6, 2016, doi: 10.1007/s10231-016-0549-8.
  16. J. Escher and C. Lienstromberg, “A qualitative analysis of solutions to microelectromechanical systems with curvature and nonlinear permittivity profile,” Comm. Partial Differential Equations, vol. 41, Art. no. 1, 2016, doi: 10.1080/03605302.2015.1105259.
  17. C. Lienstromberg, “On qualitative properties of solutions to microelectromechanical systems with general permittivity,” Monatsh. Math., vol. 179, Art. no. 4, 2016, doi: 10.1007/s00605-015-0744-5.
  18. C. Lienstromberg, “A free boundary value problem modelling microelectromechanical systems with general permittivity,” Nonlinear Anal. Real World Appl., vol. 25, pp. 190–218, 2015, doi: 10.1016/j.nonrwa.2015.03.008.

Project number 545145736, reference number LI 4544/2-1

 

as part of the Cluster of Excellence EXC 2075 „Data-Integrated Simulation Science“.

25.02.-01.03.2024 Dr. Stefan Schiffer (MPI Leipzig)
25.09.-29.09.2023 Dr. Stefan Schiffer (MPI Leipzig)
02.05.-04.05.2023 Prof. Michael Ortiz (Hausdorf Center for Mathematics Bonn/ California Institute of Technology
27.02.-03.03.2023 Dr. Richard Schubert (Universität Bonn)
26.02.-05.03.2023 Dr. Stefan Schiffer (MPI Leipzig)
27.01.-04.02.2023  Dr. Jonas Jansen (Lund University)
26.01.-04.02.2023 Dr. Katerina Nik (Universität Wien)
22.01.-29.01.2023 Dr. Stefan Schiffer (MPI Leipzig)
08.01.-14.01.2023 Dr. Jonas Jansen (Lund University)
08.01.-11.01.2023 Dr. Gabriele Brüll (Lund University)
01.12.-02.12.2022 Dr. Richard Schubert (Universität Bonn)
20.05.2022 Dr. Richard Schubert (Universität Bonn)

 

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations,
PDE-Seminar in Delft, 03.11.2022

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations, Conference "Recent Trends in Fluid Mechanics" at ICMAT Madrid, 26.09.2022

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations,
Group seminar der "AG Nichtlineare Partielle Differentialgleichungen" at Karlsruhe, 17.05.2022

Research seminar "Seminar on PDE in the Sciences" in Bonn, 08.04.2022

Winter Term 2023/2024

 

Lectures

  • Summer Term 2023: Einführung in die Partiellen Differentialgleichung
  • Winter Term 2022/23: Analytic semigroups and parabolic evolution equations
  • Summer Term 2022: Strongly continuous semigroups and hyperbolic evolution equations.

Seminars

  • Summer 2022: Thin-film flows with non-trivial dynamics (Masterseminar)

Mastertheses:

  • A justification of the thin-film approximation for the Stokes flow (2023)
  • Global Weak Solutions to the Ellis Thin-Film Equation (2022)
  • A free-boundary problem for the Newtonian thin-film equation with mobilities hn, n (1, 2) and some aspects on the non-Newtonian case (2022)
  • Non-Newtonian two-phase thin-film problems; Local Existence, uniqueness and stability (2021)
  • Transport-Reaction Models (2021)
To the top of the page