This image shows Christina Lienstromberg

Christina Lienstromberg

Jun.-Prof. Dr.

Professor - Head of Research Group on Differential Equations
Institute of Analysis, Dynamics and Modeling
Head of Research Group on Differential Equations

Contact

+49 711 685 65523

Business card (VCF)

Pfaffenwaldring 57
70569 Stuttgart
Germany
Room: 8.560

Office Hours

E-mail me for appointments and inquiries using.

Research field: Applied Analysis

  • Partial differential equations and free-boundary value problems
  • Modelling and analysis of non-Newtonian thin fluid films
  • Rimming flows
  • Data-driven fluid dynamics

  1. I. M. Karabash, C. Lienstromberg, and J. J. L. Velázquez, “Multi-parameter Hopf bifurcations of rimming flows,” 2024, doi: https://doi.org/10.48550/arXiv.2406.11690.
  2. C. Lienstromberg, S. Schiffer, and R. Schubert, “A data-driven approach to viscous fluid mechanics: The stationary case,” Arch. Rational Mech. Anal., vol. 247, no. 30, Art. no. 30, 2023, doi: 10.1007/s00205-023-01849-w.
  3. C. Lienstromberg and J. J. L. Velázquez, “Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting.” arXiv, to appear in Pure and Applied Analysis, 2023. doi: 10.48550/ARXIV.2203.00075.
  4. J. Jansen, C. Lienstromberg, and K. Nik, “Long-Time Behavior and Stability for Quasilinear Doubly Degenerate Parabolic Equations of Higher Order,” SIAM Journal on Mathematical Analysis, vol. 55, no. 2, Art. no. 2, 2023, doi: 10.1137/22M1491137.
  5. P. Gladbach, J. Jansen, and C. Lienstromberg, “Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off,” 2023, doi: 10.48550/ARXIV.2301.10300.
  6. C. Lienstromberg, S. Schiffer, and R. Schubert, “A variational approach to the non-newtonian Navier-Stokes equations,” 2023. doi: doi:10.48550/ARXIV.2312.03546.
  7. O. Assenmacher, G. Bruell, and C. Lienstromberg, “Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability,” Comm. Partial Differential Equations, vol. 47, no. 1, Art. no. 1, 2022, doi: 10.1080/03605302.2021.1957929.
  8. C. Lienstromberg, T. Pernas-Castano, and J. J. L. Velázquez, “Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid,” J. Nonlinear Sci., vol. 32, no. 2, Art. no. 2, 2022, doi: 10.1007/s00332-021-09750-0.
  9. J. Escher, P. Knopf, C. Lienstromberg, and B.-V. Matioc, “Stratified periodic water waves with singular density gradients,” Ann. Mat. Pura Appl. (4), vol. 199, no. 5, Art. no. 5, 2020, doi: 10.1007/s10231-020-00950-1.
  10. C. Lienstromberg and S. Müller, “Local strong solutions to a quasilinear degenerate fourth-order thin-film equation,” NoDEA Nonlinear Differential Equations Appl., vol. 27, no. 2, Art. no. 2, 2020, doi: 10.1007/s00030-020-0619-x.
  11. J. Escher and C. Lienstromberg, “Travelling waves in dilatant non-Newtonian thin films,” J. Differential Equations, vol. 264, no. 3, Art. no. 3, 2018, doi: 10.1016/j.jde.2017.10.015.
  12. J. Escher, P. Gosselet, and C. Lienstromberg, “A note on model reduction for microelectromechanical systems,” Nonlinearity, vol. 30, no. 2, Art. no. 2, 2017, doi: 10.1088/1361-6544/aa4ff9.
  13. C. Lienstromberg, “Well-posedness of a quasilinear evolution problem modelling MEMS with general permittivity,” J. Evol. Equ., vol. 17, no. 4, Art. no. 4, 2017, doi: 10.1007/s00028-016-0375-x.
  14. J. Escher and C. Lienstromberg, “A survey on second-order free boundary value problems modelling MEMS with general permittivity profile,” Discrete Contin. Dyn. Syst. Ser. S, vol. 10, no. 4, Art. no. 4, 2017, doi: 10.3934/dcdss.2017038.
  15. J. Escher and C. Lienstromberg, “Finite-time singularities of solutions to microelectromechanical systems with general permittivity,” Ann. Mat. Pura Appl. (4), vol. 195, no. 6, Art. no. 6, 2016, doi: 10.1007/s10231-016-0549-8.
  16. J. Escher and C. Lienstromberg, “A qualitative analysis of solutions to microelectromechanical systems with curvature and nonlinear permittivity profile,” Comm. Partial Differential Equations, vol. 41, no. 1, Art. no. 1, 2016, doi: 10.1080/03605302.2015.1105259.
  17. C. Lienstromberg, “On qualitative properties of solutions to microelectromechanical systems with general permittivity,” Monatsh. Math., vol. 179, no. 4, Art. no. 4, 2016, doi: 10.1007/s00605-015-0744-5.
  18. C. Lienstromberg, “A free boundary value problem modelling microelectromechanical systems with general permittivity,” Nonlinear Anal. Real World Appl., vol. 25, pp. 190--218, 2015, doi: 10.1016/j.nonrwa.2015.03.008.

Project number 545145736, reference number LI 4544/2-1

 

as part of the Cluster of Excellence EXC 2075 „Data-Integrated Simulation Science“.

25.02.-01.03.2024 Dr. Stefan Schiffer (MPI Leipzig)
25.09.-29.09.2023 Dr. Stefan Schiffer (MPI Leipzig)
02.05.-04.05.2023 Prof. Michael Ortiz (Hausdorf Center for Mathematics Bonn/ California Institute of Technology
27.02.-03.03.2023 Dr. Richard Schubert (Universität Bonn)
26.02.-05.03.2023 Dr. Stefan Schiffer (MPI Leipzig)
27.01.-04.02.2023  Dr. Jonas Jansen (Lund University)
26.01.-04.02.2023 Dr. Katerina Nik (Universität Wien)
22.01.-29.01.2023 Dr. Stefan Schiffer (MPI Leipzig)
08.01.-14.01.2023 Dr. Jonas Jansen (Lund University)
08.01.-11.01.2023 Dr. Gabriele Brüll (Lund University)
01.12.-02.12.2022 Dr. Richard Schubert (Universität Bonn)
20.05.2022 Dr. Richard Schubert (Universität Bonn)

 

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations,
PDE-Seminar in Delft, 03.11.2022

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations, Conference "Recent Trends in Fluid Mechanics" at ICMAT Madrid, 26.09.2022

Long-Time Behaviour of Solutions to Non-Newtonian Thin-Film Equations,
Group seminar der "AG Nichtlineare Partielle Differentialgleichungen" at Karlsruhe, 17.05.2022

Research seminar "Seminar on PDE in the Sciences" in Bonn, 08.04.2022

Winter Term 2023/2024

 

Lectures

  • Summer Term 2023: Einführung in die Partiellen Differentialgleichung
  • Winter Term 2022/23: Analytic semigroups and parabolic evolution equations
  • Summer Term 2022: Strongly continuous semigroups and hyperbolic evolution equations.

Seminars

  • Summer 2022: Thin-film flows with non-trivial dynamics (Masterseminar)

Mastertheses:

  • A justification of the thin-film approximation for the Stokes flow (2023)
  • Global Weak Solutions to the Ellis Thin-Film Equation (2022)
  • A free-boundary problem for the Newtonian thin-film equation with mobilities hn, n (1, 2) and some aspects on the non-Newtonian case (2022)
  • Non-Newtonian two-phase thin-film problems; Local Existence, uniqueness and stability (2021)
  • Transport-Reaction Models (2021)
To the top of the page