Contact
Pfaffenwaldring 57
70569 Stuttgart
Germany
Bücher
- Inverse Spectral Theory. Mit Eugene Trubowitz.
Academic Press, Boston, 1987. <fac> - Seminar on Dynamical Systems, St. Petersburg 1991. Mit Vladimir Lazutkin und Sergej Kuksin (Eds).
Birkhäuser, Basel, 1994. - KdV & KAM. Mit Thomas Kappeler.
Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 45. Springer, Berlin, 2003. - Etwas Analysis. Eine Einführung in die eindimensionale Analysis.
Springer Spectrum, 2014, 339 Seiten. - Etwas mehr Analysis. Eine Einführung in die mehrdimensionale Analysis.
Springer Spectrum, 2014, 292 Seiten. - Noch mehr Analysis. Lebesgueintegral – Lp-Räume – Fouriertheorie – Funktionentheorie.
Springer Spectrum, 2014, 356 Seiten.
Arbeiten
- Über invariante Tori in differenzierbaren Hamiltonschen Systemen.
Bonn. Math. Schr. 120 (1980). <fac> <fac-2> - Integrability of Hamiltonian systems on Cantor sets.
Commun. Pure Appl. Math. 35 (1982) 653–696. <fac> <fac-2> - The concept of integrability of Hamiltonian systems on Cantor sets.
Celestial Mech. 28 (1982) 133–139. <fac> - Examples of discrete Schrödinger operators with pure point spectrum.
Commun. Math. Phys. 88 (1983) 447–463. <pdf-1> <pdf-2> <fac> - An extension of a result by Dinaburg and Sinai on quasi-periodic potentials.
Mit Jürgen Moser. Comment. Math. Helv. 59 (1984) 39–85. <fac> - On the stationary Schrödinger equation with a quasi-periodic potential.
In: Brittin, Gustafson, Wyss (Eds), Proceedings of the VIIth International Congress on Mathematical Physics 1983. North-Holland, Amsterdam 1984, 535–542. <fac> - On invariant manifolds of complex analytic mappings near fixed points.
Expo. Math. 4 (1986) 97–109. <pdf-1> <pdf-2> - A general infinite dimensional KAM-theorem.
In: Simon, Truman, Davies (Eds), IXth International Congress on Mathematical Physics 1988. Adam Hilger, Bristol, New York 1989, 462–465. <fac> - On elliptic lower dimensional tori in Hamiltonian systems.
Math. Z. 202 (1989) 559–608. <pdf-1> <pdf-2> <fac> - Small divisors with spatial structure in infinite dimensional Hamiltonian systems.
Commun. Math. Phys. 127 (1990) 351–393. <pdf-1> <pdf-2> - On the Fröhlich-Spencer estimate in the theory of Anderson localization.
manus. math. 70 (1990) 27–37. <pdf-1> <pdf-2> - The Hausdorff dimension of small divisors for lower dimensional KAM-tori.
Mit M.M. Dodson, B.P. Rynne, J.A.G. Vickers.
Proc. Roy. Soc. Lond. A 439 (1992) 359–371. <pdf-1> <pdf-2> - On Nekhoroshev's estimate for quasi-convex Hamiltonians.
Math. Z. 213 (1993) 187–216. <pdf-1> <pdf-2> - On the inclusion of analytic symplectic maps in analytic hamiltonian flows and its applications.Mit Sergej Kuksin.
In: Lazutkin, Kuksin, Pöschel (Eds), Seminar on Dynamical Systems, St. Petersburg 1991. Birkhäuser, Basel 1994, 96–116. <pdf-1> <pdf-2> - Appendix zu J. Moser, On the persistence of pseudo-holomorphic curves on an almost complex torus (with an appendix by Jürgen Pöschel).
Inv. Math. 119 (1995) 401–442. <fac> - Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation.Mit Sergej Kuksin.
Ann. Math. 143 (1996) 149–179. <pdf-1> <pdf-2> <fac> - A KAM-theorem for some nonlinear partial differential equations.
Ann. Sc. Norm. Sup. Pisa 23 (1996) 119–148. <pdf-1> <pdf-2> - Quasi-periodic solutions for a nonlinear wave equation.
Comment. Math. Helv. 71 (1996) 269–296. <pdf-1> <pdf-2> <fac> - Some recent results concerning quasi-periodic solutions for a nonlinear string equation.
In: Proceedings of the Workshop on Variational and Local Methods in the Study of Hamiltonian Systems. World Scientific Publishing, Singapore, 1995, 97–109. <pdf-1> <pdf-2> - On an estimate by Sergej Kuksin concerning a partial differential equation on a torus with variable coefficients. Mit Thomas Kappeler.
Preprint, Universität Stuttgart (1996). <pdf-1> <pdf-2> - Nonlinear partial differential equations, Birkhoff normal forms, and KAM theory.
Progress in Mathematics 169 (1998) 167–186. <pdf-1> <pdf-2> - On Nekhoroshev's estimate at an elliptic equilibrium.
Int. Math. Res. Not. 1999:4 (1999) 203–215. <pdf-1> <pdf-2> - On Nekhoroshev estimates for a nonlinear Schrödinger equation and a theorem by Bambusi.
Nonlinearity 12 (1999) 1587–1600. <pdf-1> <pdf-2> <fac> - A lecture on the classical KAM-theorem.
Proc. Symp. Pure Math. 69 (2001) 707–732. <pdf-1> <pdf-2> - On the construction of almost periodic solutions for a nonlinear Schrödinger equation.
Ergod. Th. & Dynam. Syst. 22 (2002) 1537–1549. <pdf-1> <pdf-2> <fac> - On the Korteweg-de Vries equation and KAM theory. Mit Thomas Kappeler.
In: S. Hildebrandt & H. Karcher (Eds), Geometric Analysis and Nonlinear Partial Differential Equations. Springer, Berlin, 2003, 397–416. <pdf-1> <pdf-2> <fac> - A note on gaps of Hill's equation. Mit Benoît Grebért & Thomas Kappeler.
Int. Math. Res. Notes 2004:50 (2004) 2703–2717. <pdf-1> <pdf-2> <fac> - Hill's potentials in weighted Sobolev spaces and their spectral gaps.
Preprint, Stuttgarter Mathematische Berichte, 2004. <pdf>
Slightly revised version with an interesting epilog, 2007–8. <pdf-1> <pdf-2>
Math. Ann. (2010). - Spectral gaps of potentials in weighted Sobolev spaces.
In: W. Craig (ed), Hamiltonian Systems and Applications, Springer, 2008, 421–430. <pdf-1> <pdf-2> - On the well-posedness of the periodic KdV equation in high regularity classes. Mit Thomas Kappeler.
In: W. Craig (ed), Hamiltonian Systems and Applications, Springer, 2008, 431–441. <pdf-1> <pdf-2> - On the periodic KdV equation in weighted Sobolev spaces. Mit Thomas Kappeler.
Ann. I. H. Poincaré – AN 26 (2009) 841–853. <pdf-1> <pdf-2> - KAM à la R.
Regul. Chaotic Dyn. 16 (2011) 17–23. <pdf> - On the Siegel-Sternberg linearization theorem.
Preprint, 2017. <pdf>